| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> |
| |
| #include <stdio.h> |
| |
| #include "main.h" |
| #include <unsupported/Eigen/NumericalDiff> |
| |
| // Generic functor |
| template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> |
| struct Functor |
| { |
| typedef _Scalar Scalar; |
| enum { |
| InputsAtCompileTime = NX, |
| ValuesAtCompileTime = NY |
| }; |
| typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; |
| typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; |
| typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; |
| |
| int m_inputs, m_values; |
| |
| Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} |
| Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {} |
| |
| int inputs() const { return m_inputs; } |
| int values() const { return m_values; } |
| |
| }; |
| |
| struct my_functor : Functor<double> |
| { |
| my_functor(void): Functor<double>(3,15) {} |
| int operator()(const VectorXd &x, VectorXd &fvec) const |
| { |
| double tmp1, tmp2, tmp3; |
| double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, |
| 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; |
| |
| for (int i = 0; i < values(); i++) |
| { |
| tmp1 = i+1; |
| tmp2 = 16 - i - 1; |
| tmp3 = (i>=8)? tmp2 : tmp1; |
| fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); |
| } |
| return 0; |
| } |
| |
| int actual_df(const VectorXd &x, MatrixXd &fjac) const |
| { |
| double tmp1, tmp2, tmp3, tmp4; |
| for (int i = 0; i < values(); i++) |
| { |
| tmp1 = i+1; |
| tmp2 = 16 - i - 1; |
| tmp3 = (i>=8)? tmp2 : tmp1; |
| tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4; |
| fjac(i,0) = -1; |
| fjac(i,1) = tmp1*tmp2/tmp4; |
| fjac(i,2) = tmp1*tmp3/tmp4; |
| } |
| return 0; |
| } |
| }; |
| |
| void test_forward() |
| { |
| VectorXd x(3); |
| MatrixXd jac(15,3); |
| MatrixXd actual_jac(15,3); |
| my_functor functor; |
| |
| x << 0.082, 1.13, 2.35; |
| |
| // real one |
| functor.actual_df(x, actual_jac); |
| // std::cout << actual_jac << std::endl << std::endl; |
| |
| // using NumericalDiff |
| NumericalDiff<my_functor> numDiff(functor); |
| numDiff.df(x, jac); |
| // std::cout << jac << std::endl; |
| |
| VERIFY_IS_APPROX(jac, actual_jac); |
| } |
| |
| void test_central() |
| { |
| VectorXd x(3); |
| MatrixXd jac(15,3); |
| MatrixXd actual_jac(15,3); |
| my_functor functor; |
| |
| x << 0.082, 1.13, 2.35; |
| |
| // real one |
| functor.actual_df(x, actual_jac); |
| |
| // using NumericalDiff |
| NumericalDiff<my_functor,Central> numDiff(functor); |
| numDiff.df(x, jac); |
| |
| VERIFY_IS_APPROX(jac, actual_jac); |
| } |
| |
| void test_NumericalDiff() |
| { |
| CALL_SUBTEST(test_forward()); |
| CALL_SUBTEST(test_central()); |
| } |