| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void matrixRedux(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); |
| VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy |
| Scalar s(0), p(1), minc(ei_real(m1.coeff(0))), maxc(ei_real(m1.coeff(0))); |
| for(int j = 0; j < cols; j++) |
| for(int i = 0; i < rows; i++) |
| { |
| s += m1(i,j); |
| p *= m1(i,j); |
| minc = std::min(ei_real(minc), ei_real(m1(i,j))); |
| maxc = std::max(ei_real(maxc), ei_real(m1(i,j))); |
| } |
| const Scalar mean = s/Scalar(RealScalar(rows*cols)); |
| |
| VERIFY_IS_APPROX(m1.sum(), s); |
| VERIFY_IS_APPROX(m1.mean(), mean); |
| VERIFY_IS_APPROX(m1.prod(), p); |
| VERIFY_IS_APPROX(m1.real().minCoeff(), ei_real(minc)); |
| VERIFY_IS_APPROX(m1.real().maxCoeff(), ei_real(maxc)); |
| |
| // test slice vectorization assuming assign is ok |
| Index r0 = ei_random<Index>(0,rows-1); |
| Index c0 = ei_random<Index>(0,cols-1); |
| Index r1 = ei_random<Index>(r0+1,rows)-r0; |
| Index c1 = ei_random<Index>(c0+1,cols)-c0; |
| VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); |
| VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); |
| VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).prod(), m1.block(r0,c0,r1,c1).eval().prod()); |
| VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); |
| VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); |
| } |
| |
| template<typename VectorType> void vectorRedux(const VectorType& w) |
| { |
| typedef typename VectorType::Index Index; |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| Index size = w.size(); |
| |
| VectorType v = VectorType::Random(size); |
| for(int i = 1; i < size; i++) |
| { |
| Scalar s(0), p(1); |
| RealScalar minc(ei_real(v.coeff(0))), maxc(ei_real(v.coeff(0))); |
| for(int j = 0; j < i; j++) |
| { |
| s += v[j]; |
| p *= v[j]; |
| minc = std::min(minc, ei_real(v[j])); |
| maxc = std::max(maxc, ei_real(v[j])); |
| } |
| VERIFY_IS_APPROX(s, v.head(i).sum()); |
| VERIFY_IS_APPROX(p, v.head(i).prod()); |
| VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); |
| } |
| |
| for(int i = 0; i < size-1; i++) |
| { |
| Scalar s(0), p(1); |
| RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i))); |
| for(int j = i; j < size; j++) |
| { |
| s += v[j]; |
| p *= v[j]; |
| minc = std::min(minc, ei_real(v[j])); |
| maxc = std::max(maxc, ei_real(v[j])); |
| } |
| VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(s - v.tail(size-i).sum()), Scalar(1)); |
| VERIFY_IS_APPROX(p, v.tail(size-i).prod()); |
| VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); |
| } |
| |
| for(int i = 0; i < size/2; i++) |
| { |
| Scalar s(0), p(1); |
| RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i))); |
| for(int j = i; j < size-i; j++) |
| { |
| s += v[j]; |
| p *= v[j]; |
| minc = std::min(minc, ei_real(v[j])); |
| maxc = std::max(maxc, ei_real(v[j])); |
| } |
| VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum()); |
| VERIFY_IS_APPROX(p, v.segment(i, size-2*i).prod()); |
| VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); |
| } |
| } |
| |
| void test_redux() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); |
| CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); |
| CALL_SUBTEST_2( matrixRedux(Array2f()) ); |
| CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); |
| CALL_SUBTEST_3( matrixRedux(Array4d()) ); |
| CALL_SUBTEST_4( matrixRedux(MatrixXcf(3, 3)) ); |
| CALL_SUBTEST_4( matrixRedux(ArrayXXcf(3, 3)) ); |
| CALL_SUBTEST_5( matrixRedux(MatrixXd(8, 12)) ); |
| CALL_SUBTEST_5( matrixRedux(ArrayXXd(8, 12)) ); |
| CALL_SUBTEST_6( matrixRedux(MatrixXi(8, 12)) ); |
| CALL_SUBTEST_6( matrixRedux(ArrayXXi(8, 12)) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_7( vectorRedux(Vector4f()) ); |
| CALL_SUBTEST_7( vectorRedux(Array4f()) ); |
| CALL_SUBTEST_5( vectorRedux(VectorXd(10)) ); |
| CALL_SUBTEST_5( vectorRedux(ArrayXd(10)) ); |
| CALL_SUBTEST_8( vectorRedux(VectorXf(33)) ); |
| CALL_SUBTEST_8( vectorRedux(ArrayXf(33)) ); |
| } |
| } |