blob: c4223e2204efa27412e7cc55e19c76de6a352999 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_BINARY_OP_H
#define EIGEN_CWISE_BINARY_OP_H
/** \class CwiseBinaryOp
*
* \brief Generic expression of a coefficient-wise operator between two matrices or vectors
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression of a generic binary operator of two matrices or vectors.
* It is the return type of the operator+, operator-, and the Cwise methods, and most
* of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
template<typename BinaryOp, typename Lhs, typename Rhs>
struct ei_traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename ei_result_of<
BinaryOp(
typename Lhs::Scalar,
typename Rhs::Scalar
)
>::type Scalar;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename ei_unref<LhsNested>::type _LhsNested;
typedef typename ei_unref<RhsNested>::type _RhsNested;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Lhs::ColsAtCompileTime,
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Lhs::MaxColsAtCompileTime,
Flags = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) & (LinearAccessBit | AlignedBit))
| (ei_functor_traits<BinaryOp>::PacketAccess && ((int(LhsFlags) & RowMajorBit)==(int(RhsFlags) & RowMajorBit))
? (int(LhsFlags) & int(RhsFlags) & PacketAccessBit) : 0)),
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + ei_functor_traits<BinaryOp>::Cost
};
};
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOp : ei_no_assignment_operator,
public MatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename ei_traits<CwiseBinaryOp>::LhsNested LhsNested;
typedef typename ei_traits<CwiseBinaryOp>::RhsNested RhsNested;
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& lhs, const Rhs& rhs, const BinaryOp& func = BinaryOp())
: m_lhs(lhs), m_rhs(rhs), m_functor(func)
{
// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
// that would take two operands of different types. If there were such an example, then this check should be
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
// currently they take only one typename Scalar template parameter.
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
EIGEN_STATIC_ASSERT((ei_functor_allows_mixing_real_and_complex<BinaryOp>::ret
? int(ei_is_same_type<typename Lhs::RealScalar, typename Rhs::RealScalar>::ret)
: int(ei_is_same_type<typename Lhs::Scalar, typename Rhs::Scalar>::ret)),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
ei_assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
}
EIGEN_STRONG_INLINE int rows() const { return m_lhs.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_lhs.cols(); }
EIGEN_STRONG_INLINE const Scalar coeff(int row, int col) const
{
return m_functor(m_lhs.coeff(row, col), m_rhs.coeff(row, col));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
{
return m_functor.packetOp(m_lhs.template packet<LoadMode>(row, col), m_rhs.template packet<LoadMode>(row, col));
}
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
{
return m_functor(m_lhs.coeff(index), m_rhs.coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
{
return m_functor.packetOp(m_lhs.template packet<LoadMode>(index), m_rhs.template packet<LoadMode>(index));
}
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
const BinaryOp m_functor;
};
/**\returns an expression of the difference of \c *this and \a other
*
* \note If you want to substract a given scalar from all coefficients, see Cwise::operator-().
*
* \sa class CwiseBinaryOp, MatrixBase::operator-=(), Cwise::operator-()
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>,
Derived, OtherDerived>
MatrixBase<Derived>::operator-(const MatrixBase<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
Derived, OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
return *this = *this - other;
}
/** \relates MatrixBase
*
* \returns an expression of the sum of \c *this and \a other
*
* \note If you want to add a given scalar to all coefficients, see Cwise::operator+().
*
* \sa class CwiseBinaryOp, MatrixBase::operator+=(), Cwise::operator+()
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::operator+(const MatrixBase<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_sum_op<Scalar>, Derived, OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
return *this = *this + other;
}
/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
*
* Example: \include Cwise_product.cpp
* Output: \verbinclude Cwise_product.out
*
* \sa class CwiseBinaryOp, operator/(), square()
*/
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE
Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(_expression(), other.derived());
}
/** \returns an expression of the coefficient-wise quotient of *this and \a other
*
* Example: \include Cwise_quotient.cpp
* Output: \verbinclude Cwise_quotient.out
*
* \sa class CwiseBinaryOp, operator*(), inverse()
*/
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)
Cwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)(_expression(), other.derived());
}
/** Replaces this expression by its coefficient-wise product with \a other.
*
* Example: \include Cwise_times_equal.cpp
* Output: \verbinclude Cwise_times_equal.out
*
* \sa operator*(), operator/=()
*/
template<typename ExpressionType>
template<typename OtherDerived>
inline ExpressionType& Cwise<ExpressionType>::operator*=(const MatrixBase<OtherDerived> &other)
{
return m_matrix.const_cast_derived() = *this * other;
}
/** Replaces this expression by its coefficient-wise quotient by \a other.
*
* Example: \include Cwise_slash_equal.cpp
* Output: \verbinclude Cwise_slash_equal.out
*
* \sa operator/(), operator*=()
*/
template<typename ExpressionType>
template<typename OtherDerived>
inline ExpressionType& Cwise<ExpressionType>::operator/=(const MatrixBase<OtherDerived> &other)
{
return m_matrix.const_cast_derived() = *this / other;
}
/** \returns an expression of the coefficient-wise min of *this and \a other
*
* Example: \include Cwise_min.cpp
* Output: \verbinclude Cwise_min.out
*
* \sa class CwiseBinaryOp
*/
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)
Cwise<ExpressionType>::min(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)(_expression(), other.derived());
}
/** \returns an expression of the coefficient-wise max of *this and \a other
*
* Example: \include Cwise_max.cpp
* Output: \verbinclude Cwise_max.out
*
* \sa class CwiseBinaryOp
*/
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)
Cwise<ExpressionType>::max(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)(_expression(), other.derived());
}
/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other
*
* The template parameter \a CustomBinaryOp is the type of the functor
* of the custom operator (see class CwiseBinaryOp for an example)
*
* \addexample CustomCwiseBinaryFunctors \label How to use custom coeff wise binary functors
*
* Here is an example illustrating the use of custom functors:
* \include class_CwiseBinaryOp.cpp
* Output: \verbinclude class_CwiseBinaryOp.out
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, Cwise::operator*, Cwise::operator/
*/
template<typename Derived>
template<typename CustomBinaryOp, typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
MatrixBase<Derived>::binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func) const
{
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(derived(), other.derived(), func);
}
#endif // EIGEN_CWISE_BINARY_OP_H