| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_FUNCTORS_H |
| #define EIGEN_FUNCTORS_H |
| |
| // associative functors: |
| |
| /** \internal |
| * \brief Template functor to compute the sum of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::operator+, class PartialRedux, MatrixBase::sum() |
| */ |
| template<typename Scalar> struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_padd(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_sum_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the product of two scalars |
| * |
| * \sa class CwiseBinaryOp, Cwise::operator*(), class PartialRedux, MatrixBase::redux() |
| */ |
| template<typename Scalar> struct ei_scalar_product_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pmul(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_product_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the min of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class PartialRedux, MatrixBase::minCoeff() |
| */ |
| template<typename Scalar> struct ei_scalar_min_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pmin(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_min_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the max of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class PartialRedux, MatrixBase::maxCoeff() |
| */ |
| template<typename Scalar> struct ei_scalar_max_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pmax(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_max_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| |
| // other binary functors: |
| |
| /** \internal |
| * \brief Template functor to compute the difference of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::operator- |
| */ |
| template<typename Scalar> struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_psub(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_difference_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the quotient of two scalars |
| * |
| * \sa class CwiseBinaryOp, Cwise::operator/() |
| */ |
| template<typename Scalar> struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pdiv(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient_op<Scalar> > { |
| enum { |
| Cost = 2 * NumTraits<Scalar>::MulCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| #if (defined EIGEN_VECTORIZE_SSE) |
| && NumTraits<Scalar>::HasFloatingPoint |
| #endif |
| }; |
| }; |
| |
| // unary functors: |
| |
| /** \internal |
| * \brief Template functor to compute the opposite of a scalar |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator- |
| */ |
| template<typename Scalar> struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_opposite_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to compute the absolute value of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::abs |
| */ |
| template<typename Scalar> struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_abs_op<Scalar> > |
| { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = false // this could actually be vectorized with SSSE3. |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the squared absolute value of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::abs2 |
| */ |
| template<typename Scalar> struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pmul(a,a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_abs2_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; }; |
| |
| /** \internal |
| * \brief Template functor to compute the conjugate of a complex value |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::conjugate() |
| */ |
| template<typename Scalar> struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return a; } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_conjugate_op<Scalar> > |
| { |
| enum { |
| Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0, |
| PacketAccess = int(ei_packet_traits<Scalar>::size)>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to cast a scalar to another type |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::cast() |
| */ |
| template<typename Scalar, typename NewType> |
| struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT { |
| typedef NewType result_type; |
| EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return static_cast<NewType>(a); } |
| }; |
| template<typename Scalar, typename NewType> |
| struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> > |
| { enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to extract the real part of a complex |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::real() |
| */ |
| template<typename Scalar> |
| struct ei_scalar_real_op EIGEN_EMPTY_STRUCT { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_real_op<Scalar> > |
| { enum { Cost = 0, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to extract the imaginary part of a complex |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::imag() |
| */ |
| template<typename Scalar> |
| struct ei_scalar_imag_op EIGEN_EMPTY_STRUCT { |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_imag_op<Scalar> > |
| { enum { Cost = 0, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to multiply a scalar by a fixed other one |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ |
| */ |
| /* NOTE why doing the ei_pset1() in packetOp *is* an optimization ? |
| * indeed it seems better to declare m_other as a PacketScalar and do the ei_pset1() once |
| * in the constructor. However, in practice: |
| * - GCC does not like m_other as a PacketScalar and generate a load every time it needs it |
| * - one the other hand GCC is able to moves the ei_pset1() away the loop :) |
| * - simpler code ;) |
| * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) |
| */ |
| template<typename Scalar> |
| struct ei_scalar_multiple_op { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| // FIXME default copy constructors seems bugged with std::complex<> |
| EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { } |
| EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pmul(a, ei_pset1(m_other)); } |
| const Scalar m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_multiple_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; }; |
| |
| template<typename Scalar, bool HasFloatingPoint> |
| struct ei_scalar_quotient1_impl { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| // FIXME default copy constructors seems bugged with std::complex<> |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {} |
| EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pmul(a, ei_pset1(m_other)); } |
| const Scalar m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,true> > |
| { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; }; |
| |
| template<typename Scalar> |
| struct ei_scalar_quotient1_impl<Scalar,false> { |
| // FIXME default copy constructors seems bugged with std::complex<> |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} |
| EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } |
| const Scalar m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> > |
| { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to divide a scalar by a fixed other one |
| * |
| * This functor is used to implement the quotient of a matrix by |
| * a scalar where the scalar type is not necessarily a floating point type. |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator/ |
| */ |
| template<typename Scalar> |
| struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint > { |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other) |
| : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint >(other) {} |
| }; |
| |
| // nullary functors |
| |
| template<typename Scalar> |
| struct ei_scalar_constant_op { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { } |
| EIGEN_STRONG_INLINE const Scalar operator() (int, int = 0) const { return m_other; } |
| EIGEN_STRONG_INLINE const PacketScalar packetOp() const { return ei_pset1(m_other); } |
| const Scalar m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_constant_op<Scalar> > |
| { enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; }; |
| |
| template<typename Scalar> struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT { |
| EIGEN_STRONG_INLINE ei_scalar_identity_op(void) {} |
| EIGEN_STRONG_INLINE const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_identity_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; }; |
| |
| // allow to add new functors and specializations of ei_functor_traits from outside Eigen. |
| // this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used... |
| #ifdef EIGEN_FUNCTORS_PLUGIN |
| #include EIGEN_FUNCTORS_PLUGIN |
| #endif |
| |
| // all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta |
| // to indicate whether a functor allows linear access, just always answering 'yes' except for |
| // ei_scalar_identity_op. |
| template<typename Functor> struct ei_functor_has_linear_access { enum { ret = 1 }; }; |
| template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity_op<Scalar> > { enum { ret = 0 }; }; |
| |
| // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication |
| // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>. |
| template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; }; |
| template<typename Scalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<Scalar> > { enum { ret = 1 }; }; |
| |
| #endif // EIGEN_FUNCTORS_H |