| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_MATRIX_H |
| #define EIGEN_MATRIX_H |
| |
| |
| /** \class Matrix |
| * |
| * \brief The matrix class, also used for vectors and row-vectors |
| * |
| * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen. |
| * Vectors are matrices with one column, and row-vectors are matrices with one row. |
| * |
| * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note"). |
| * |
| * The first three template parameters are required: |
| * \param _Scalar Numeric type, i.e. float, double, int |
| * \param _Rows Number of rows, or \b Dynamic |
| * \param _Cols Number of columns, or \b Dynamic |
| * |
| * The remaining template parameters are optional -- in most cases you don't have to worry about them. |
| * \param _Options A combination of either \b RowMajor or \b ColMajor, and of either |
| * \b AutoAlign or \b DontAlign. |
| * The former controls storage order, and defaults to column-major. The latter controls alignment, which is required |
| * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size. |
| * \param _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note"). |
| * \param _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note"). |
| * |
| * Eigen provides a number of typedefs covering the usual cases. Here are some examples: |
| * |
| * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>) |
| * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>) |
| * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>) |
| * |
| * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>) |
| * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>) |
| * |
| * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs. |
| * |
| * You can access elements of vectors and matrices using normal subscripting: |
| * |
| * \code |
| * Eigen::VectorXd v(10); |
| * v[0] = 0.1; |
| * v[1] = 0.2; |
| * v(0) = 0.3; |
| * v(1) = 0.4; |
| * |
| * Eigen::MatrixXi m(10, 10); |
| * m(0, 1) = 1; |
| * m(0, 2) = 2; |
| * m(0, 3) = 3; |
| * \endcode |
| * |
| * <i><b>Some notes:</b></i> |
| * |
| * <dl> |
| * <dt><b>\anchor dense Dense versus sparse:</b></dt> |
| * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module. |
| * |
| * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array. |
| * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd> |
| * |
| * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt> |
| * <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array |
| * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up |
| * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time. |
| * |
| * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime |
| * variables, and the array of coefficients is allocated dynamically on the heap. |
| * |
| * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map. |
| * If you want this behavior, see the Sparse module.</dd> |
| * |
| * <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt> |
| * <dd>In most cases, one just leaves these parameters to the default values. |
| * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases |
| * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot |
| * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols |
| * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd> |
| * </dl> |
| * |
| * \see MatrixBase for the majority of the API methods for matrices |
| */ |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| { |
| typedef _Scalar Scalar; |
| enum { |
| RowsAtCompileTime = _Rows, |
| ColsAtCompileTime = _Cols, |
| MaxRowsAtCompileTime = _MaxRows, |
| MaxColsAtCompileTime = _MaxCols, |
| Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost |
| }; |
| }; |
| |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| class Matrix |
| : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| { |
| public: |
| EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix) |
| enum { Options = _Options }; |
| friend class Eigen::Map<Matrix, Unaligned>; |
| typedef class Eigen::Map<Matrix, Unaligned> UnalignedMapType; |
| friend class Eigen::Map<Matrix, Aligned>; |
| typedef class Eigen::Map<Matrix, Aligned> AlignedMapType; |
| |
| protected: |
| ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage; |
| |
| public: |
| enum { NeedsToAlign = (Options&AutoAlign) == AutoAlign |
| && SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 }; |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| |
| EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); } |
| EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); } |
| |
| EIGEN_STRONG_INLINE int stride(void) const |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.cols(); |
| else |
| return m_storage.rows(); |
| } |
| |
| EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[col + row * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[row + col * m_storage.rows()]; |
| } |
| |
| EIGEN_STRONG_INLINE const Scalar& coeff(int index) const |
| { |
| return m_storage.data()[index]; |
| } |
| |
| EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col) |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[col + row * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[row + col * m_storage.rows()]; |
| } |
| |
| EIGEN_STRONG_INLINE Scalar& coeffRef(int index) |
| { |
| return m_storage.data()[index]; |
| } |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const |
| { |
| return ei_ploadt<Scalar, LoadMode> |
| (m_storage.data() + (Flags & RowMajorBit |
| ? col + row * m_storage.cols() |
| : row + col * m_storage.rows())); |
| } |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(int index) const |
| { |
| return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index); |
| } |
| |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x) |
| { |
| ei_pstoret<Scalar, PacketScalar, StoreMode> |
| (m_storage.data() + (Flags & RowMajorBit |
| ? col + row * m_storage.cols() |
| : row + col * m_storage.rows()), x); |
| } |
| |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x) |
| { |
| ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x); |
| } |
| |
| /** \returns a const pointer to the data array of this matrix */ |
| EIGEN_STRONG_INLINE const Scalar *data() const |
| { return m_storage.data(); } |
| |
| /** \returns a pointer to the data array of this matrix */ |
| EIGEN_STRONG_INLINE Scalar *data() |
| { return m_storage.data(); } |
| |
| /** Resizes \c *this to a \a rows x \a cols matrix. |
| * |
| * Makes sense for dynamic-size matrices only. |
| * |
| * If the current number of coefficients of \c *this exactly matches the |
| * product \a rows * \a cols, then no memory allocation is performed and |
| * the current values are left unchanged. In all other cases, including |
| * shrinking, the data is reallocated and all previous values are lost. |
| * |
| * \sa resize(int) for vectors. |
| */ |
| inline void resize(int rows, int cols) |
| { |
| ei_assert(rows > 0 && cols > 0 && "a matrix cannot be resized to 0 size"); |
| ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows) |
| && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) |
| && (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols) |
| && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)); |
| m_storage.resize(rows * cols, rows, cols); |
| } |
| |
| /** Resizes \c *this to a vector of length \a size |
| * |
| * \sa resize(int,int) for the details. |
| */ |
| inline void resize(int size) |
| { |
| ei_assert(size>0 && "a vector cannot be resized to 0 length"); |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) |
| if(RowsAtCompileTime == 1) |
| m_storage.resize(size, 1, size); |
| else |
| m_storage.resize(size, size, 1); |
| } |
| |
| /** Copies the value of the expression \a other into \c *this with automatic resizing. |
| * |
| * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| * it will be initialized. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other) |
| { |
| return _set(other); |
| } |
| |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other) |
| { |
| return _set(other); |
| } |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=) |
| EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=) |
| EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=) |
| EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=) |
| |
| /** Default constructor. |
| * |
| * For fixed-size matrices, does nothing. |
| * |
| * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix |
| * is called a null matrix. This constructor is the unique way to create null matrices: resizing |
| * a matrix to 0 is not supported. |
| * |
| * \sa resize(int,int) |
| */ |
| EIGEN_STRONG_INLINE explicit Matrix() : m_storage() |
| { |
| _check_template_params(); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** \internal */ |
| Matrix(ei_constructor_without_unaligned_array_assert) |
| : m_storage(ei_constructor_without_unaligned_array_assert()) |
| {} |
| #endif |
| |
| /** Constructs a vector or row-vector with given dimension. \only_for_vectors |
| * |
| * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, |
| * it is redundant to pass the dimension here, so it makes more sense to use the default |
| * constructor Matrix() instead. |
| */ |
| EIGEN_STRONG_INLINE explicit Matrix(int dim) |
| : m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) |
| { |
| _check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) |
| ei_assert(dim > 0); |
| ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); |
| } |
| |
| /** This constructor has two very different behaviors, depending on the type of *this. |
| * |
| * \li When Matrix is a fixed-size vector type of size 2, this constructor constructs |
| * an initialized vector. The parameters \a x, \a y are copied into the first and second |
| * coords of the vector respectively. |
| * \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and |
| * \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices, |
| * it is redundant to pass these parameters, so one should use the default constructor |
| * Matrix() instead. |
| */ |
| EIGEN_STRONG_INLINE Matrix(int x, int y) : m_storage(x*y, x, y) |
| { |
| _check_template_params(); |
| if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2) |
| || (RowsAtCompileTime == 2 && ColsAtCompileTime == 1)) |
| { |
| m_storage.data()[0] = Scalar(x); |
| m_storage.data()[1] = Scalar(y); |
| } |
| else |
| { |
| ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x) |
| && y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y)); |
| } |
| } |
| /** constructs an initialized 2D vector with given coefficients */ |
| EIGEN_STRONG_INLINE Matrix(const float& x, const float& y) |
| { |
| _check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2) |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| } |
| /** constructs an initialized 2D vector with given coefficients */ |
| EIGEN_STRONG_INLINE Matrix(const double& x, const double& y) |
| { |
| _check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2) |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| } |
| /** constructs an initialized 3D vector with given coefficients */ |
| EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z) |
| { |
| _check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3) |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| m_storage.data()[2] = z; |
| } |
| /** constructs an initialized 4D vector with given coefficients */ |
| EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) |
| { |
| _check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4) |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| m_storage.data()[2] = z; |
| m_storage.data()[3] = w; |
| } |
| |
| explicit Matrix(const Scalar *data); |
| |
| /** Constructor copying the value of the expression \a other */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other) |
| : m_storage(other.rows() * other.cols(), other.rows(), other.cols()) |
| { |
| _check_template_params(); |
| _set_noalias(other); |
| } |
| /** Copy constructor */ |
| EIGEN_STRONG_INLINE Matrix(const Matrix& other) |
| : Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols()) |
| { |
| _check_template_params(); |
| _set_noalias(other); |
| } |
| /** Destructor */ |
| inline ~Matrix() {} |
| |
| /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the |
| * data pointers. |
| */ |
| inline void swap(Matrix& other) |
| { |
| if (Base::SizeAtCompileTime==Dynamic) |
| m_storage.swap(other.m_storage); |
| else |
| this->Base::swap(other); |
| } |
| |
| /** \name Map |
| * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, |
| * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned |
| * \a data pointers. |
| * |
| * \see class Map |
| */ |
| //@{ |
| inline static const UnalignedMapType Map(const Scalar* data) |
| { return UnalignedMapType(data); } |
| inline static UnalignedMapType Map(Scalar* data) |
| { return UnalignedMapType(data); } |
| inline static const UnalignedMapType Map(const Scalar* data, int size) |
| { return UnalignedMapType(data, size); } |
| inline static UnalignedMapType Map(Scalar* data, int size) |
| { return UnalignedMapType(data, size); } |
| inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols) |
| { return UnalignedMapType(data, rows, cols); } |
| inline static UnalignedMapType Map(Scalar* data, int rows, int cols) |
| { return UnalignedMapType(data, rows, cols); } |
| |
| inline static const AlignedMapType MapAligned(const Scalar* data) |
| { return AlignedMapType(data); } |
| inline static AlignedMapType MapAligned(Scalar* data) |
| { return AlignedMapType(data); } |
| inline static const AlignedMapType MapAligned(const Scalar* data, int size) |
| { return AlignedMapType(data, size); } |
| inline static AlignedMapType MapAligned(Scalar* data, int size) |
| { return AlignedMapType(data, size); } |
| inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols) |
| { return AlignedMapType(data, rows, cols); } |
| inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols) |
| { return AlignedMapType(data, rows, cols); } |
| //@} |
| |
| /////////// Geometry module /////////// |
| |
| template<typename OtherDerived> |
| explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r); |
| template<typename OtherDerived> |
| Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r); |
| |
| // allow to extend Matrix outside Eigen |
| #ifdef EIGEN_MATRIX_PLUGIN |
| #include EIGEN_MATRIX_PLUGIN |
| #endif |
| |
| private: |
| /** \internal Resizes *this in preparation for assigning \a other to it. |
| * Takes care of doing all the checking that's needed. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void _resize_to_match(const MatrixBase<OtherDerived>& other) |
| { |
| if(RowsAtCompileTime == 1) |
| { |
| ei_assert(other.isVector()); |
| resize(1, other.size()); |
| } |
| else if(ColsAtCompileTime == 1) |
| { |
| ei_assert(other.isVector()); |
| resize(other.size(), 1); |
| } |
| else resize(other.rows(), other.cols()); |
| } |
| |
| /** \internal Copies the value of the expression \a other into \c *this with automatic resizing. |
| * |
| * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| * it will be initialized. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| * |
| * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias() |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other) |
| { |
| _resize_to_match(other); |
| return Base::operator=(other); |
| } |
| |
| /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which |
| * is the case when creating a new matrix) so one can enforce lazy evaluation. |
| * |
| * \sa operator=(const MatrixBase<OtherDerived>&), _set() |
| */ |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE Matrix& _set_noalias(const MatrixBase<OtherDerived>& other) |
| { |
| _resize_to_match(other); |
| // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because |
| // it wouldn't allow to copy a row-vector into a column-vector. |
| return ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived()); |
| } |
| |
| static EIGEN_STRONG_INLINE void _check_template_params() |
| { |
| EIGEN_STATIC_ASSERT((_Rows > 0 |
| && _Cols > 0 |
| && _MaxRows <= _Rows |
| && _MaxCols <= _Cols |
| && (_Options & (AutoAlign|RowMajor)) == _Options), |
| INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| } |
| }; |
| |
| /** \defgroup matrixtypedefs Global matrix typedefs |
| * |
| * \ingroup Core_Module |
| * |
| * Eigen defines several typedef shortcuts for most common matrix and vector types. |
| * |
| * The general patterns are the following: |
| * |
| * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, |
| * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd |
| * for complex double. |
| * |
| * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats. |
| * |
| * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is |
| * a fixed-size vector of 4 complex floats. |
| * |
| * \sa class Matrix |
| */ |
| |
| #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| /** \ingroup matrixtypedefs */ \ |
| typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \ |
| /** \ingroup matrixtypedefs */ \ |
| typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \ |
| /** \ingroup matrixtypedefs */ \ |
| typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) |
| |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) |
| |
| #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES |
| #undef EIGEN_MAKE_TYPEDEFS |
| |
| #undef EIGEN_MAKE_TYPEDEFS_LARGE |
| |
| #define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ |
| using Eigen::Matrix##SizeSuffix##TypeSuffix; \ |
| using Eigen::Vector##SizeSuffix##TypeSuffix; \ |
| using Eigen::RowVector##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ |
| |
| #define EIGEN_USING_MATRIX_TYPEDEFS \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd) |
| |
| #endif // EIGEN_MATRIX_H |