| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TRANSPOSE_H |
| #define EIGEN_TRANSPOSE_H |
| |
| /** \class Transpose |
| * |
| * \brief Expression of the transpose of a matrix |
| * |
| * \param MatrixType the type of the object of which we are taking the transpose |
| * |
| * This class represents an expression of the transpose of a matrix. |
| * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() |
| * and most of the time this is the only way it is used. |
| * |
| * \sa MatrixBase::transpose(), MatrixBase::adjoint() |
| */ |
| template<typename MatrixType> |
| struct ei_traits<Transpose<MatrixType> > |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename ei_nested<MatrixType>::type MatrixTypeNested; |
| typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested; |
| enum { |
| RowsAtCompileTime = MatrixType::ColsAtCompileTime, |
| ColsAtCompileTime = MatrixType::RowsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit) |
| & ~(LowerTriangularBit | UpperTriangularBit)) |
| | (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0) |
| | (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0), |
| CoeffReadCost = _MatrixTypeNested::CoeffReadCost |
| }; |
| }; |
| |
| template<typename MatrixType> class Transpose |
| : public MatrixBase<Transpose<MatrixType> > |
| { |
| public: |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) |
| |
| inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {} |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose) |
| |
| inline int rows() const { return m_matrix.cols(); } |
| inline int cols() const { return m_matrix.rows(); } |
| inline int nonZeros() const { return m_matrix.nonZeros(); } |
| inline int stride(void) const { return m_matrix.stride(); } |
| |
| inline Scalar& coeffRef(int row, int col) |
| { |
| return m_matrix.const_cast_derived().coeffRef(col, row); |
| } |
| |
| inline const Scalar coeff(int row, int col) const |
| { |
| return m_matrix.coeff(col, row); |
| } |
| |
| inline const Scalar coeff(int index) const |
| { |
| return m_matrix.coeff(index); |
| } |
| |
| inline Scalar& coeffRef(int index) |
| { |
| return m_matrix.const_cast_derived().coeffRef(index); |
| } |
| |
| template<int LoadMode> |
| inline const PacketScalar packet(int row, int col) const |
| { |
| return m_matrix.template packet<LoadMode>(col, row); |
| } |
| |
| template<int LoadMode> |
| inline void writePacket(int row, int col, const PacketScalar& x) |
| { |
| m_matrix.const_cast_derived().template writePacket<LoadMode>(col, row, x); |
| } |
| |
| template<int LoadMode> |
| inline const PacketScalar packet(int index) const |
| { |
| return m_matrix.template packet<LoadMode>(index); |
| } |
| |
| template<int LoadMode> |
| inline void writePacket(int index, const PacketScalar& x) |
| { |
| m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x); |
| } |
| |
| protected: |
| const typename MatrixType::Nested m_matrix; |
| }; |
| |
| /** \returns an expression of the transpose of *this. |
| * |
| * Example: \include MatrixBase_transpose.cpp |
| * Output: \verbinclude MatrixBase_transpose.out |
| * |
| * \sa adjoint(), class DiagonalCoeffs */ |
| template<typename Derived> |
| inline Transpose<Derived> |
| MatrixBase<Derived>::transpose() |
| { |
| return derived(); |
| } |
| |
| /** This is the const version of transpose(). \sa adjoint() */ |
| template<typename Derived> |
| inline const Transpose<Derived> |
| MatrixBase<Derived>::transpose() const |
| { |
| return derived(); |
| } |
| |
| /** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. |
| * |
| * Example: \include MatrixBase_adjoint.cpp |
| * Output: \verbinclude MatrixBase_adjoint.out |
| * |
| * \sa transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */ |
| template<typename Derived> |
| inline const typename MatrixBase<Derived>::AdjointReturnType |
| MatrixBase<Derived>::adjoint() const |
| { |
| return conjugate().nestByValue(); |
| } |
| |
| /*************************************************************************** |
| * "in place" transpose implementation |
| ***************************************************************************/ |
| |
| template<typename MatrixType, |
| bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic> |
| struct ei_inplace_transpose_selector; |
| |
| template<typename MatrixType> |
| struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix |
| static void run(MatrixType& m) { |
| m.template part<StrictlyUpperTriangular>().swap(m.transpose()); |
| } |
| }; |
| |
| template<typename MatrixType> |
| struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix |
| static void run(MatrixType& m) { |
| if (m.rows()==m.cols()) |
| m.template part<StrictlyUpperTriangular>().swap(m.transpose()); |
| else |
| m = m.transpose().eval(); |
| } |
| }; |
| |
| /** This is the "in place" version of transpose: it transposes \c *this. |
| * |
| * In most cases it is probably better to simply use the transposed expression |
| * of a matrix. However, when transposing the matrix data itself is really needed, |
| * then this "in-place" version is probably the right choice because it provides |
| * the following additional features: |
| * - less error prone: doing the same operation with .transpose() requires special care: |
| * \code m = m.transpose().eval(); \endcode |
| * - no temporary object is created (currently only for squared matrices) |
| * - it allows future optimizations (cache friendliness, etc.) |
| * |
| * \note if the matrix is not square, then \c *this must be a resizable matrix. |
| * |
| * \sa transpose(), adjoint() */ |
| template<typename Derived> |
| inline void MatrixBase<Derived>::transposeInPlace() |
| { |
| ei_inplace_transpose_selector<Derived>::run(derived()); |
| } |
| |
| #endif // EIGEN_TRANSPOSE_H |