blob: 48f067e7a2c6e6ec97785699262e5745be006d2e [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSE_H
#define EIGEN_TRANSPOSE_H
/** \class Transpose
*
* \brief Expression of the transpose of a matrix
*
* \param MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
template<typename MatrixType>
struct ei_traits<Transpose<MatrixType> >
{
typedef typename MatrixType::Scalar Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit)
& ~(LowerTriangularBit | UpperTriangularBit))
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<typename MatrixType> class Transpose
: public MatrixBase<Transpose<MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
inline int rows() const { return m_matrix.cols(); }
inline int cols() const { return m_matrix.rows(); }
inline int nonZeros() const { return m_matrix.nonZeros(); }
inline int stride(void) const { return m_matrix.stride(); }
inline Scalar& coeffRef(int row, int col)
{
return m_matrix.const_cast_derived().coeffRef(col, row);
}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(col, row);
}
inline const Scalar coeff(int index) const
{
return m_matrix.coeff(index);
}
inline Scalar& coeffRef(int index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(int row, int col) const
{
return m_matrix.template packet<LoadMode>(col, row);
}
template<int LoadMode>
inline void writePacket(int row, int col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(col, row, x);
}
template<int LoadMode>
inline const PacketScalar packet(int index) const
{
return m_matrix.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(int index, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
}
protected:
const typename MatrixType::Nested m_matrix;
};
/** \returns an expression of the transpose of *this.
*
* Example: \include MatrixBase_transpose.cpp
* Output: \verbinclude MatrixBase_transpose.out
*
* \sa adjoint(), class DiagonalCoeffs */
template<typename Derived>
inline Transpose<Derived>
MatrixBase<Derived>::transpose()
{
return derived();
}
/** This is the const version of transpose(). \sa adjoint() */
template<typename Derived>
inline const Transpose<Derived>
MatrixBase<Derived>::transpose() const
{
return derived();
}
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
*
* Example: \include MatrixBase_adjoint.cpp
* Output: \verbinclude MatrixBase_adjoint.out
*
* \sa transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
return conjugate().nestByValue();
}
/***************************************************************************
* "in place" transpose implementation
***************************************************************************/
template<typename MatrixType,
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
struct ei_inplace_transpose_selector;
template<typename MatrixType>
struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix
static void run(MatrixType& m) {
m.template part<StrictlyUpperTriangular>().swap(m.transpose());
}
};
template<typename MatrixType>
struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix
static void run(MatrixType& m) {
if (m.rows()==m.cols())
m.template part<StrictlyUpperTriangular>().swap(m.transpose());
else
m = m.transpose().eval();
}
};
/** This is the "in place" version of transpose: it transposes \c *this.
*
* In most cases it is probably better to simply use the transposed expression
* of a matrix. However, when transposing the matrix data itself is really needed,
* then this "in-place" version is probably the right choice because it provides
* the following additional features:
* - less error prone: doing the same operation with .transpose() requires special care:
* \code m = m.transpose().eval(); \endcode
* - no temporary object is created (currently only for squared matrices)
* - it allows future optimizations (cache friendliness, etc.)
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint() */
template<typename Derived>
inline void MatrixBase<Derived>::transposeInPlace()
{
ei_inplace_transpose_selector<Derived>::run(derived());
}
#endif // EIGEN_TRANSPOSE_H