| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H |
| #define EIGEN_DYNAMIC_SPARSEMATRIX_H |
| |
| /** \class DynamicSparseMatrix |
| * |
| * \brief A sparse matrix class designed for matrix assembly purpose |
| * |
| * \param _Scalar the scalar type, i.e. the type of the coefficients |
| * |
| * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows |
| * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is |
| * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows |
| * otherwise. |
| * |
| * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might |
| * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance |
| * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors. |
| * |
| * \see SparseMatrix |
| */ |
| template<typename _Scalar, int _Flags> |
| struct ei_traits<DynamicSparseMatrix<_Scalar, _Flags> > |
| { |
| typedef _Scalar Scalar; |
| enum { |
| RowsAtCompileTime = Dynamic, |
| ColsAtCompileTime = Dynamic, |
| MaxRowsAtCompileTime = Dynamic, |
| MaxColsAtCompileTime = Dynamic, |
| Flags = SparseBit | _Flags, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| SupportedAccessPatterns = OuterRandomAccessPattern |
| }; |
| }; |
| |
| template<typename _Scalar, int _Flags> |
| class DynamicSparseMatrix |
| : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Flags> > |
| { |
| public: |
| EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(DynamicSparseMatrix) |
| typedef MappedSparseMatrix<Scalar,Flags> Map; |
| |
| protected: |
| |
| enum { IsRowMajor = Base::IsRowMajor }; |
| typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; |
| |
| int m_innerSize; |
| std::vector<CompressedStorage<Scalar> > m_data; |
| |
| public: |
| |
| inline int rows() const { return IsRowMajor ? outerSize() : m_innerSize; } |
| inline int cols() const { return IsRowMajor ? m_innerSize : outerSize(); } |
| inline int innerSize() const { return m_innerSize; } |
| inline int outerSize() const { return m_data.size(); } |
| inline int innerNonZeros(int j) const { return m_data[j].size(); } |
| |
| /** \returns the coefficient value at given position \a row, \a col |
| * This operation involes a log(rho*outer_size) binary search. |
| */ |
| inline Scalar coeff(int row, int col) const |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| return m_data[outer].at(inner); |
| } |
| |
| /** \returns a reference to the coefficient value at given position \a row, \a col |
| * This operation involes a log(rho*outer_size) binary search. If the coefficient does not |
| * exist yet, then a sorted insertion into a sequential buffer is performed. |
| */ |
| inline Scalar& coeffRef(int row, int col) |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| return m_data[outer].atWithInsertion(inner); |
| } |
| |
| class InnerIterator; |
| |
| inline void setZero() |
| { |
| for (int j=0; j<outerSize(); ++j) |
| m_data[j].clear(); |
| } |
| |
| /** \returns the number of non zero coefficients */ |
| inline int nonZeros() const |
| { |
| int res = 0; |
| for (int j=0; j<outerSize(); ++j) |
| res += m_data[j].size(); |
| return res; |
| } |
| |
| /** Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */ |
| inline void startFill(int reserveSize = 1000) |
| { |
| int reserveSizePerVector = std::max(reserveSize/outerSize(),4); |
| for (int j=0; j<outerSize(); ++j) |
| { |
| m_data[j].clear(); |
| m_data[j].reserve(reserveSizePerVector); |
| } |
| } |
| |
| /** inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that: |
| * 1 - the coefficient does not exist yet |
| * 2 - this the coefficient with greater inner coordinate for the given outer coordinate. |
| * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates |
| * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid. |
| * |
| * \see fillrand(), coeffRef() |
| */ |
| inline Scalar& fill(int row, int col) |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| ei_assert(outer<int(m_data.size()) && inner<m_innerSize); |
| ei_assert((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner)); |
| m_data[outer].append(0, inner); |
| return m_data[outer].value(m_data[outer].size()-1); |
| } |
| |
| /** Like fill() but with random inner coordinates. |
| * Compared to the generic coeffRef(), the unique limitation is that we assume |
| * the coefficient does not exist yet. |
| */ |
| inline Scalar& fillrand(int row, int col) |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| |
| int startId = 0; |
| int id = m_data[outer].size() - 1; |
| m_data[outer].resize(id+2,1); |
| |
| while ( (id >= startId) && (m_data[outer].index(id) > inner) ) |
| { |
| m_data[outer].index(id+1) = m_data[outer].index(id); |
| m_data[outer].value(id+1) = m_data[outer].value(id); |
| --id; |
| } |
| m_data[outer].index(id+1) = inner; |
| m_data[outer].value(id+1) = 0; |
| return m_data[outer].value(id+1); |
| } |
| |
| /** Does nothing. Provided for compatibility with SparseMatrix. */ |
| inline void endFill() {} |
| |
| void prune(Scalar reference, RealScalar epsilon = precision<RealScalar>()) |
| { |
| for (int j=0; j<outerSize(); ++j) |
| m_data[j].prune(reference,epsilon); |
| } |
| |
| /** Resize the matrix without preserving the data (the matrix is set to zero) |
| */ |
| void resize(int rows, int cols) |
| { |
| const int outerSize = IsRowMajor ? rows : cols; |
| m_innerSize = IsRowMajor ? cols : rows; |
| setZero(); |
| if (int(m_data.size()) != outerSize) |
| { |
| m_data.resize(outerSize); |
| } |
| } |
| |
| void resizeAndKeepData(int rows, int cols) |
| { |
| const int outerSize = IsRowMajor ? rows : cols; |
| const int innerSize = IsRowMajor ? cols : rows; |
| if (m_innerSize>innerSize) |
| { |
| // remove all coefficients with innerCoord>=innerSize |
| // TODO |
| std::cerr << "not implemented yet\n"; |
| exit(2); |
| } |
| if (m_data.size() != outerSize) |
| { |
| m_data.resize(outerSize); |
| } |
| } |
| |
| inline DynamicSparseMatrix() |
| : m_innerSize(0) |
| { |
| ei_assert(innerSize()==0 && outerSize()==0); |
| } |
| |
| inline DynamicSparseMatrix(int rows, int cols) |
| : m_innerSize(0) |
| { |
| resize(rows, cols); |
| } |
| |
| template<typename OtherDerived> |
| inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other) |
| : m_innerSize(0) |
| { |
| *this = other.derived(); |
| } |
| |
| inline DynamicSparseMatrix(const DynamicSparseMatrix& other) |
| : Base(), m_innerSize(0) |
| { |
| *this = other.derived(); |
| } |
| |
| inline void swap(DynamicSparseMatrix& other) |
| { |
| //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); |
| std::swap(m_innerSize, other.m_innerSize); |
| //std::swap(m_outerSize, other.m_outerSize); |
| m_data.swap(other.m_data); |
| } |
| |
| inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other) |
| { |
| if (other.isRValue()) |
| { |
| swap(other.const_cast_derived()); |
| } |
| else |
| { |
| resize(other.rows(), other.cols()); |
| m_data = other.m_data; |
| } |
| return *this; |
| } |
| |
| template<typename OtherDerived> |
| inline DynamicSparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other) |
| { |
| return SparseMatrixBase<DynamicSparseMatrix>::operator=(other.derived()); |
| } |
| |
| /** Destructor */ |
| inline ~DynamicSparseMatrix() {} |
| }; |
| |
| template<typename Scalar, int _Flags> |
| class DynamicSparseMatrix<Scalar,_Flags>::InnerIterator : public SparseVector<Scalar,_Flags>::InnerIterator |
| { |
| typedef typename SparseVector<Scalar,_Flags>::InnerIterator Base; |
| public: |
| InnerIterator(const DynamicSparseMatrix& mat, int outer) |
| : Base(mat.m_data[outer]), m_outer(outer) |
| {} |
| |
| inline int row() const { return IsRowMajor ? m_outer : Base::index(); } |
| inline int col() const { return IsRowMajor ? Base::index() : m_outer; } |
| |
| |
| protected: |
| const int m_outer; |
| }; |
| |
| #endif // EIGEN_DYNAMIC_SPARSEMATRIX_H |