| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <functional> |
| #include <Eigen/Array> |
| |
| using namespace std; |
| |
| template<typename Scalar> struct AddIfNull { |
| const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} |
| enum { Cost = NumTraits<Scalar>::AddCost }; |
| }; |
| |
| template<typename MatrixType> void cwiseops(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| mones = MatrixType::Ones(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| int r = ei_random<int>(0, rows-1), |
| c = ei_random<int>(0, cols-1); |
| |
| m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); |
| |
| VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); |
| VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); |
| VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); |
| |
| VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); |
| VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); |
| m3 = m1; m3.cwise() += 1; |
| VERIFY_IS_APPROX(m1 + mones, m3); |
| m3 = m1; m3.cwise() -= 1; |
| VERIFY_IS_APPROX(m1 - mones, m3); |
| |
| VERIFY_IS_APPROX(m2, m2.cwise() * mones); |
| VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1); |
| m3 = m1; |
| m3.cwise() *= m2; |
| VERIFY_IS_APPROX(m3, m1.cwise() * m2); |
| |
| VERIFY_IS_APPROX(mones, m2.cwise()/m2); |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| { |
| VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse())); |
| m3 = m1.cwise().abs().cwise().sqrt(); |
| VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); |
| VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); |
| VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); |
| |
| // VERIFY_IS_APPROX(m1.cwise().pow(-1), m1.cwise().inverse()); |
| // VERIFY_IS_APPROX(m1.cwise().pow(0.5), m1.cwise().sqrt()); |
| // VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); |
| VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); |
| m3 = m1; |
| m3.cwise() /= m2; |
| VERIFY_IS_APPROX(m3, m1.cwise() / m2); |
| } |
| |
| // check min |
| VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); |
| VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); |
| VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); |
| |
| // check max |
| VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); |
| VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); |
| VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); |
| |
| VERIFY( (m1.cwise() == m1).all() ); |
| VERIFY( (m1.cwise() != m2).any() ); |
| VERIFY(!(m1.cwise() == (m1+mones)).any() ); |
| if (rows*cols>1) |
| { |
| m3 = m1; |
| m3(r,c) += 1; |
| VERIFY( (m1.cwise() == m3).any() ); |
| VERIFY( !(m1.cwise() == m3).all() ); |
| } |
| VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); |
| VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); |
| VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); |
| VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); |
| |
| VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); |
| VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); |
| VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); |
| } |
| |
| void test_cwiseop() |
| { |
| for(int i = 0; i < g_repeat ; i++) { |
| CALL_SUBTEST( cwiseops(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( cwiseops(Matrix4d()) ); |
| CALL_SUBTEST( cwiseops(MatrixXf(3, 3)) ); |
| CALL_SUBTEST( cwiseops(MatrixXf(22, 22)) ); |
| CALL_SUBTEST( cwiseops(MatrixXi(8, 12)) ); |
| CALL_SUBTEST( cwiseops(MatrixXd(20, 20)) ); |
| } |
| } |