| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| |
| template<typename Scalar> void |
| initSPD(double density, |
| Matrix<Scalar,Dynamic,Dynamic>& refMat, |
| SparseMatrix<Scalar>& sparseMat) |
| { |
| Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols()); |
| initSparse(density,refMat,sparseMat); |
| refMat = refMat * refMat.adjoint(); |
| for (int k=0; k<2; ++k) |
| { |
| initSparse(density,aux,sparseMat,ForceNonZeroDiag); |
| refMat += aux * aux.adjoint(); |
| } |
| sparseMat.startFill(); |
| for (int j=0 ; j<sparseMat.cols(); ++j) |
| for (int i=j ; i<sparseMat.rows(); ++i) |
| if (refMat(i,j)!=Scalar(0)) |
| sparseMat.fill(i,j) = refMat(i,j); |
| sparseMat.endFill(); |
| } |
| |
| template<typename Scalar> void sparse_solvers(int rows, int cols) |
| { |
| double density = std::max(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| // Scalar eps = 1e-6; |
| |
| DenseVector vec1 = DenseVector::Random(rows); |
| |
| std::vector<Vector2i> zeroCoords; |
| std::vector<Vector2i> nonzeroCoords; |
| |
| // test triangular solver |
| { |
| DenseVector vec2 = vec1, vec3 = vec1; |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| |
| // lower |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); |
| VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2), |
| m2.template marked<LowerTriangular>().solveTriangular(vec3)); |
| |
| // upper |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); |
| VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2), |
| m2.template marked<UpperTriangular>().solveTriangular(vec3)); |
| |
| // TODO test row major |
| } |
| |
| // test LLT |
| { |
| // TODO fix the issue with complex (see SparseLLT::solveInPlace) |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector refX(cols), x(cols); |
| |
| initSPD(density, refMat2, m2); |
| |
| refMat2.llt().solve(b, &refX); |
| typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix; |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| x = b; |
| SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default"); |
| } |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| x = b; |
| SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod"); |
| #endif |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| #ifdef EIGEN_TAUCS_SUPPORT |
| x = b; |
| SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)"); |
| x = b; |
| SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)"); |
| x = b; |
| SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)"); |
| #endif |
| } |
| } |
| |
| // test LDLT |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| // TODO fix the issue with complex (see SparseLDLT::solveInPlace) |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector refX(cols), x(cols); |
| |
| //initSPD(density, refMat2, m2); |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); |
| refMat2 += refMat2.adjoint(); |
| refMat2.diagonal() *= 0.5; |
| |
| refMat2.ldlt().solve(b, &refX); |
| typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix; |
| x = b; |
| SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); |
| if (ldlt.succeeded()) |
| ldlt.solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); |
| } |
| |
| // test LU |
| { |
| static int count = 0; |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector refX(cols), x(cols); |
| |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords); |
| |
| LU<DenseMatrix> refLu(refMat2); |
| refLu.solve(b, &refX); |
| #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT) |
| Scalar refDet = refLu.determinant(); |
| #endif |
| x.setZero(); |
| // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x); |
| // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default"); |
| #ifdef EIGEN_SUPERLU_SUPPORT |
| { |
| x.setZero(); |
| SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2); |
| if (slu.succeeded()) |
| { |
| if (slu.solve(b,&x)) { |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); |
| } |
| // std::cerr << refDet << " == " << slu.determinant() << "\n"; |
| if (count==0) { |
| VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex |
| } |
| } |
| } |
| #endif |
| #ifdef EIGEN_UMFPACK_SUPPORT |
| { |
| // check solve |
| x.setZero(); |
| SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2); |
| if (slu.succeeded()) { |
| if (slu.solve(b,&x)) { |
| if (count==0) { |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex |
| } |
| } |
| VERIFY_IS_APPROX(refDet,slu.determinant()); |
| // TODO check the extracted data |
| //std::cerr << slu.matrixL() << "\n"; |
| } |
| } |
| #endif |
| count++; |
| } |
| |
| } |
| |
| void test_sparse_solvers() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( sparse_solvers<double>(8, 8) ); |
| CALL_SUBTEST( sparse_solvers<std::complex<double> >(16, 16) ); |
| CALL_SUBTEST( sparse_solvers<double>(101, 101) ); |
| } |
| } |