blob: 78e65e927e9e1ba6195f9278669b99bbe13af297 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/StdVector>
#include <Eigen/Geometry>
template<typename MatrixType>
void check_stdvector_matrix(const MatrixType& m)
{
int rows = m.rows();
int cols = m.cols();
MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols);
std::vector<MatrixType> v(10, MatrixType(rows,cols)), w(20, y);
v[5] = x;
w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]);
v = w;
for(int i = 0; i < 20; i++)
{
VERIFY_IS_APPROX(w[i], v[i]);
}
v.resize(21);
v[20] = x;
VERIFY_IS_APPROX(v[20], x);
v.resize(22,y);
VERIFY_IS_APPROX(v[21], y);
v.push_back(x);
VERIFY_IS_APPROX(v[22], x);
VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType));
// do a lot of push_back such that the vector gets internally resized
// (with memory reallocation)
MatrixType* ref = &w[0];
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
v.push_back(w[i%w.size()]);
for(unsigned int i=23; i<v.size(); ++i)
{
VERIFY(v[i]==w[(i-23)%w.size()]);
}
}
template<typename TransformType>
void check_stdvector_transform(const TransformType&)
{
typedef typename TransformType::MatrixType MatrixType;
TransformType x(MatrixType::Random()), y(MatrixType::Random());
std::vector<TransformType> v(10), w(20, y);
v[5] = x;
w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]);
v = w;
for(int i = 0; i < 20; i++)
{
VERIFY_IS_APPROX(w[i], v[i]);
}
v.resize(21);
v[20] = x;
VERIFY_IS_APPROX(v[20], x);
v.resize(22,y);
VERIFY_IS_APPROX(v[21], y);
v.push_back(x);
VERIFY_IS_APPROX(v[22], x);
VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType));
// do a lot of push_back such that the vector gets internally resized
// (with memory reallocation)
TransformType* ref = &w[0];
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
v.push_back(w[i%w.size()]);
for(unsigned int i=23; i<v.size(); ++i)
{
VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix());
}
}
template<typename QuaternionType>
void check_stdvector_quaternion(const QuaternionType&)
{
typedef typename QuaternionType::Coefficients Coefficients;
QuaternionType x(Coefficients::Random()), y(Coefficients::Random());
std::vector<QuaternionType> v(10), w(20, y);
v[5] = x;
w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]);
v = w;
for(int i = 0; i < 20; i++)
{
VERIFY_IS_APPROX(w[i], v[i]);
}
v.resize(21);
v[20] = x;
VERIFY_IS_APPROX(v[20], x);
v.resize(22,y);
VERIFY_IS_APPROX(v[21], y);
v.push_back(x);
VERIFY_IS_APPROX(v[22], x);
VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType));
// do a lot of push_back such that the vector gets internally resized
// (with memory reallocation)
QuaternionType* ref = &w[0];
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
v.push_back(w[i%w.size()]);
for(unsigned int i=23; i<v.size(); ++i)
{
VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs());
}
}
void test_stdvector()
{
// some non vectorizable fixed sizes
CALL_SUBTEST(check_stdvector_matrix(Vector2f()));
CALL_SUBTEST(check_stdvector_matrix(Matrix3f()));
CALL_SUBTEST(check_stdvector_matrix(Matrix3d()));
// some vectorizable fixed sizes
CALL_SUBTEST(check_stdvector_matrix(Matrix2f()));
CALL_SUBTEST(check_stdvector_matrix(Vector4f()));
CALL_SUBTEST(check_stdvector_matrix(Matrix4f()));
CALL_SUBTEST(check_stdvector_matrix(Matrix4d()));
// some dynamic sizes
CALL_SUBTEST(check_stdvector_matrix(MatrixXd(1,1)));
CALL_SUBTEST(check_stdvector_matrix(VectorXd(20)));
CALL_SUBTEST(check_stdvector_matrix(RowVectorXf(20)));
CALL_SUBTEST(check_stdvector_matrix(MatrixXcf(10,10)));
// some Transform
CALL_SUBTEST(check_stdvector_transform(Transform2f()));
CALL_SUBTEST(check_stdvector_transform(Transform3f()));
CALL_SUBTEST(check_stdvector_transform(Transform3d()));
//CALL_SUBTEST(check_stdvector_transform(Transform4d()));
// some Quaternion
CALL_SUBTEST(check_stdvector_quaternion(Quaternionf()));
CALL_SUBTEST(check_stdvector_quaternion(Quaternionf()));
}