| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_MEMORY_H |
| #define EIGEN_MEMORY_H |
| |
| // FreeBSD 6 seems to have 16-byte aligned malloc |
| // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup |
| // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures |
| // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup |
| #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) |
| #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| #if defined(__APPLE__) || defined(_WIN64) || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED |
| #define EIGEN_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| #if ((defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0) |
| #define EIGEN_HAS_POSIX_MEMALIGN 1 |
| #else |
| #define EIGEN_HAS_POSIX_MEMALIGN 0 |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_SSE |
| #define EIGEN_HAS_MM_MALLOC 1 |
| #else |
| #define EIGEN_HAS_MM_MALLOC 0 |
| #endif |
| |
| /** \internal like malloc, but the returned pointer is guaranteed to be 16-byte aligned. |
| * Fast, but wastes 16 additional bytes of memory. |
| * Does not throw any exception. |
| */ |
| inline void* ei_handmade_aligned_malloc(size_t size) |
| { |
| void *original = malloc(size+16); |
| void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16); |
| *(reinterpret_cast<void**>(aligned) - 1) = original; |
| return aligned; |
| } |
| |
| /** \internal frees memory allocated with ei_handmade_aligned_malloc */ |
| inline void ei_handmade_aligned_free(void *ptr) |
| { |
| if(ptr) |
| free(*(reinterpret_cast<void**>(ptr) - 1)); |
| } |
| |
| /** \internal allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment. |
| * On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown. |
| */ |
| inline void* ei_aligned_malloc(size_t size) |
| { |
| #ifdef EIGEN_NO_MALLOC |
| ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); |
| #endif |
| |
| void *result; |
| #if !EIGEN_ALIGN |
| result = malloc(size); |
| #elif EIGEN_MALLOC_ALREADY_ALIGNED |
| result = malloc(size); |
| #elif EIGEN_HAS_POSIX_MEMALIGN |
| if(posix_memalign(&result, 16, size)) result = 0; |
| #elif EIGEN_HAS_MM_MALLOC |
| result = _mm_malloc(size, 16); |
| #elif (defined _MSC_VER) |
| result = _aligned_malloc(size, 16); |
| #else |
| result = ei_handmade_aligned_malloc(size); |
| #endif |
| |
| #ifdef EIGEN_EXCEPTIONS |
| if(result == 0) |
| throw std::bad_alloc(); |
| #endif |
| return result; |
| } |
| |
| /** allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. |
| * On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown. |
| */ |
| template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size) |
| { |
| return ei_aligned_malloc(size); |
| } |
| |
| template<> inline void* ei_conditional_aligned_malloc<false>(size_t size) |
| { |
| #ifdef EIGEN_NO_MALLOC |
| ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); |
| #endif |
| |
| void *result = malloc(size); |
| #ifdef EIGEN_EXCEPTIONS |
| if(!result) throw std::bad_alloc(); |
| #endif |
| return result; |
| } |
| |
| /** \internal construct the elements of an array. |
| * The \a size parameter tells on how many objects to call the constructor of T. |
| */ |
| template<typename T> inline T* ei_construct_elements_of_array(T *ptr, size_t size) |
| { |
| for (size_t i=0; i < size; ++i) ::new (ptr + i) T; |
| return ptr; |
| } |
| |
| /** allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. |
| * On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown. |
| * The default constructor of T is called. |
| */ |
| template<typename T> inline T* ei_aligned_new(size_t size) |
| { |
| T *result = reinterpret_cast<T*>(ei_aligned_malloc(sizeof(T)*size)); |
| return ei_construct_elements_of_array(result, size); |
| } |
| |
| template<typename T, bool Align> inline T* ei_conditional_aligned_new(size_t size) |
| { |
| T *result = reinterpret_cast<T*>(ei_conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| return ei_construct_elements_of_array(result, size); |
| } |
| |
| /** \internal free memory allocated with ei_aligned_malloc |
| */ |
| inline void ei_aligned_free(void *ptr) |
| { |
| #if !EIGEN_ALIGN |
| free(ptr); |
| #elif EIGEN_MALLOC_ALREADY_ALIGNED |
| free(ptr); |
| #elif EIGEN_HAS_POSIX_MEMALIGN |
| free(ptr); |
| #elif EIGEN_HAS_MM_MALLOC |
| _mm_free(ptr); |
| #elif defined(_MSC_VER) |
| _aligned_free(ptr); |
| #else |
| ei_handmade_aligned_free(ptr); |
| #endif |
| } |
| |
| /** \internal free memory allocated with ei_conditional_aligned_malloc |
| */ |
| template<bool Align> inline void ei_conditional_aligned_free(void *ptr) |
| { |
| ei_aligned_free(ptr); |
| } |
| |
| template<> inline void ei_conditional_aligned_free<false>(void *ptr) |
| { |
| free(ptr); |
| } |
| |
| /** \internal destruct the elements of an array. |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T> inline void ei_destruct_elements_of_array(T *ptr, size_t size) |
| { |
| // always destruct an array starting from the end. |
| while(size) ptr[--size].~T(); |
| } |
| |
| /** \internal delete objects constructed with ei_aligned_new |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T> inline void ei_aligned_delete(T *ptr, size_t size) |
| { |
| ei_destruct_elements_of_array<T>(ptr, size); |
| ei_aligned_free(ptr); |
| } |
| |
| /** \internal delete objects constructed with ei_conditional_aligned_new |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T, bool Align> inline void ei_conditional_aligned_delete(T *ptr, size_t size) |
| { |
| ei_destruct_elements_of_array<T>(ptr, size); |
| ei_conditional_aligned_free<Align>(ptr); |
| } |
| |
| /** \internal \returns the index of the first element of the array that is well aligned for vectorization. |
| * |
| * \param array the address of the start of the array |
| * \param size the size of the array |
| * |
| * \note If no element of the array is well aligned, the size of the array is returned. Typically, |
| * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the |
| * packet size for the given scalar type is 1, then everything is considered well-aligned. |
| * |
| * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a |
| * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the |
| * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for |
| * example with Scalar=double on certain 32-bit platforms, see bug #79. |
| * |
| * There is also the variant ei_first_aligned(const MatrixBase&, Integer) defined in Coeffs.h. |
| */ |
| template<typename Scalar, typename Integer> |
| inline static Integer ei_first_aligned(const Scalar* array, Integer size) |
| { |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| enum { PacketSize = ei_packet_traits<Scalar>::size, |
| PacketAlignedMask = PacketSize-1 |
| }; |
| |
| if(PacketSize==1) |
| { |
| // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements |
| // of the array have the same aligment. |
| return 0; |
| } |
| else if(size_t(array) & (sizeof(Scalar)-1)) |
| { |
| // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar. |
| // Consequently, no element of the array is well aligned. |
| return size; |
| } |
| else |
| { |
| return std::min<Integer>( (PacketSize - (Integer((size_t(array)/sizeof(Scalar))) & PacketAlignedMask)) |
| & PacketAlignedMask, size); |
| } |
| } |
| |
| /** \internal |
| * ei_aligned_stack_alloc(SIZE) allocates an aligned buffer of SIZE bytes |
| * on the stack if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and |
| * if stack allocation is supported by the platform (currently, this is linux only). |
| * Otherwise the memory is allocated on the heap. |
| * Data allocated with ei_aligned_stack_alloc \b must be freed by calling ei_aligned_stack_free(PTR,SIZE). |
| * \code |
| * float * data = ei_aligned_stack_alloc(float,array.size()); |
| * // ... |
| * ei_aligned_stack_free(data,float,array.size()); |
| * \endcode |
| */ |
| #ifdef __linux__ |
| #define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \ |
| ? alloca(SIZE) \ |
| : ei_aligned_malloc(SIZE) |
| #define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR) |
| #else |
| #define ei_aligned_stack_alloc(SIZE) ei_aligned_malloc(SIZE) |
| #define ei_aligned_stack_free(PTR,SIZE) ei_aligned_free(PTR) |
| #endif |
| |
| #define ei_aligned_stack_new(TYPE,SIZE) ei_construct_elements_of_array(reinterpret_cast<TYPE*>(ei_aligned_stack_alloc(sizeof(TYPE)*SIZE)), SIZE) |
| #define ei_aligned_stack_delete(TYPE,PTR,SIZE) do {ei_destruct_elements_of_array<TYPE>(PTR, SIZE); \ |
| ei_aligned_stack_free(PTR,sizeof(TYPE)*SIZE);} while(0) |
| |
| |
| #if EIGEN_ALIGN |
| #ifdef EIGEN_EXCEPTIONS |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void* operator new(size_t size, const std::nothrow_t&) throw() { \ |
| try { return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); } \ |
| catch (...) { return 0; } \ |
| return 0; \ |
| } |
| #else |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void* operator new(size_t size, const std::nothrow_t&) throw() { \ |
| return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } |
| #endif |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ |
| void *operator new(size_t size) { \ |
| return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } \ |
| void *operator new[](size_t size) { \ |
| return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } \ |
| void operator delete(void * ptr) throw() { Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| void operator delete[](void * ptr) throw() { Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| /* in-place new and delete. since (at least afaik) there is no actual */ \ |
| /* memory allocated we can safely let the default implementation handle */ \ |
| /* this particular case. */ \ |
| static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \ |
| void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \ |
| /* nothrow-new (returns zero instead of std::bad_alloc) */ \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void operator delete(void *ptr, const std::nothrow_t&) throw() { \ |
| Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); \ |
| } \ |
| typedef void ei_operator_new_marker_type; |
| #else |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| #endif |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)) |
| |
| |
| /** \class aligned_allocator |
| * |
| * \brief stl compatible allocator to use with with 16 byte aligned types |
| * |
| * Example: |
| * \code |
| * // Matrix4f requires 16 bytes alignment: |
| * std::map< int, Matrix4f, std::less<int>, aligned_allocator<Matrix4f> > my_map_mat4; |
| * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: |
| * std::map< int, Vector3f > my_map_vec3; |
| * \endcode |
| * |
| */ |
| template<class T> |
| class aligned_allocator |
| { |
| public: |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef T* pointer; |
| typedef const T* const_pointer; |
| typedef T& reference; |
| typedef const T& const_reference; |
| typedef T value_type; |
| |
| template<class U> |
| struct rebind |
| { |
| typedef aligned_allocator<U> other; |
| }; |
| |
| pointer address( reference value ) const |
| { |
| return &value; |
| } |
| |
| const_pointer address( const_reference value ) const |
| { |
| return &value; |
| } |
| |
| aligned_allocator() throw() |
| { |
| } |
| |
| aligned_allocator( const aligned_allocator& ) throw() |
| { |
| } |
| |
| template<class U> |
| aligned_allocator( const aligned_allocator<U>& ) throw() |
| { |
| } |
| |
| ~aligned_allocator() throw() |
| { |
| } |
| |
| size_type max_size() const throw() |
| { |
| return std::numeric_limits<size_type>::max(); |
| } |
| |
| pointer allocate( size_type num, const_pointer* hint = 0 ) |
| { |
| static_cast<void>( hint ); // suppress unused variable warning |
| return static_cast<pointer>( ei_aligned_malloc( num * sizeof(T) ) ); |
| } |
| |
| void construct( pointer p, const T& value ) |
| { |
| ::new( p ) T( value ); |
| } |
| |
| void destroy( pointer p ) |
| { |
| p->~T(); |
| } |
| |
| void deallocate( pointer p, size_type /*num*/ ) |
| { |
| ei_aligned_free( p ); |
| } |
| |
| bool operator!=(const aligned_allocator<T>& ) const |
| { return false; } |
| |
| bool operator==(const aligned_allocator<T>& ) const |
| { return true; } |
| }; |
| |
| #endif // EIGEN_MEMORY_H |