| // // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_XPRHELPER_H |
| #define EIGEN_XPRHELPER_H |
| |
| // just a workaround because GCC seems to not really like empty structs |
| #ifdef __GNUG__ |
| #define EIGEN_EMPTY_STRUCT_CTOR(X) \ |
| EIGEN_STRONG_INLINE X() {} \ |
| EIGEN_STRONG_INLINE X(const X&) {} |
| #else |
| #define EIGEN_EMPTY_STRUCT_CTOR(X) |
| #endif |
| |
| //classes inheriting ei_no_assignment_operator don't generate a default operator=. |
| class ei_no_assignment_operator |
| { |
| private: |
| ei_no_assignment_operator& operator=(const ei_no_assignment_operator&); |
| }; |
| |
| /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that |
| * can be accessed using value() and setValue(). |
| * Otherwise, this class is an empty structure and value() just returns the template parameter Value. |
| */ |
| template<int Value> class ei_int_if_dynamic |
| { |
| public: |
| EIGEN_EMPTY_STRUCT_CTOR(ei_int_if_dynamic) |
| explicit ei_int_if_dynamic(int) {} |
| static int value() { return Value; } |
| void setValue(int) {} |
| }; |
| |
| template<> class ei_int_if_dynamic<Dynamic> |
| { |
| int m_value; |
| ei_int_if_dynamic() {} |
| public: |
| explicit ei_int_if_dynamic(int value) : m_value(value) {} |
| int value() const { return m_value; } |
| void setValue(int value) { m_value = value; } |
| }; |
| |
| template<typename T> struct ei_functor_traits |
| { |
| enum |
| { |
| Cost = 10, |
| PacketAccess = false |
| }; |
| }; |
| |
| template<typename T> struct ei_packet_traits; |
| |
| template<typename T> struct ei_unpacket_traits |
| { |
| typedef T type; |
| enum {size=1}; |
| }; |
| |
| template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| class ei_compute_matrix_flags |
| { |
| enum { |
| row_major_bit = Options&RowMajor ? RowMajorBit : 0, |
| inner_max_size = MaxCols==1 ? MaxRows |
| : MaxRows==1 ? MaxCols |
| : row_major_bit ? MaxCols : MaxRows, |
| is_big = inner_max_size == Dynamic, |
| is_packet_size_multiple = MaxRows==Dynamic || MaxCols==Dynamic || ((MaxCols*MaxRows) % ei_packet_traits<Scalar>::size) == 0, |
| aligned_bit = (((Options&DontAlign)==0) && (is_big || is_packet_size_multiple)) ? AlignedBit : 0, |
| packet_access_bit = ei_packet_traits<Scalar>::size > 1 && aligned_bit ? PacketAccessBit : 0 |
| }; |
| |
| public: |
| enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit }; |
| }; |
| |
| template<int _Rows, int _Cols> struct ei_size_at_compile_time |
| { |
| enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; |
| }; |
| |
| /* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type, |
| * whereas ei_eval is a const reference in the case of a matrix |
| */ |
| |
| template<typename T, typename StorageType = typename ei_traits<T>::StorageType> struct ei_plain_matrix_type; |
| template<typename T, typename BaseClassType> struct ei_plain_matrix_type_dense; |
| template<typename T> struct ei_plain_matrix_type<T,Dense> |
| { |
| typedef typename ei_plain_matrix_type_dense<T,typename ei_traits<T>::DenseStorageType>::type type; |
| }; |
| |
| template<typename T> struct ei_plain_matrix_type_dense<T,DenseStorageMatrix> |
| { |
| typedef Matrix<typename ei_traits<T>::Scalar, |
| ei_traits<T>::RowsAtCompileTime, |
| ei_traits<T>::ColsAtCompileTime, |
| AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), |
| ei_traits<T>::MaxRowsAtCompileTime, |
| ei_traits<T>::MaxColsAtCompileTime |
| > type; |
| }; |
| |
| template<typename T> struct ei_plain_matrix_type_dense<T,DenseStorageArray> |
| { |
| typedef Array<typename ei_traits<T>::Scalar, |
| ei_traits<T>::RowsAtCompileTime, |
| ei_traits<T>::ColsAtCompileTime, |
| AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), |
| ei_traits<T>::MaxRowsAtCompileTime, |
| ei_traits<T>::MaxColsAtCompileTime |
| > type; |
| }; |
| |
| /* ei_eval : the return type of eval(). For matrices, this is just a const reference |
| * in order to avoid a useless copy |
| */ |
| |
| template<typename T, typename StorageType = typename ei_traits<T>::StorageType> class ei_eval; |
| |
| template<typename T> struct ei_eval<T,Dense> |
| { |
| typedef typename ei_plain_matrix_type<T>::type type; |
| // typedef typename T::PlainMatrixType type; |
| // typedef T::Matrix<typename ei_traits<T>::Scalar, |
| // ei_traits<T>::RowsAtCompileTime, |
| // ei_traits<T>::ColsAtCompileTime, |
| // AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), |
| // ei_traits<T>::MaxRowsAtCompileTime, |
| // ei_traits<T>::MaxColsAtCompileTime |
| // > type; |
| }; |
| |
| // for matrices, no need to evaluate, just use a const reference to avoid a useless copy |
| template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols> |
| struct ei_eval<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense> |
| { |
| typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type; |
| }; |
| |
| template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols> |
| struct ei_eval<Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense> |
| { |
| typedef const Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type; |
| }; |
| |
| |
| |
| /* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major |
| */ |
| template<typename T> struct ei_plain_matrix_type_column_major |
| { |
| typedef Matrix<typename ei_traits<T>::Scalar, |
| ei_traits<T>::RowsAtCompileTime, |
| ei_traits<T>::ColsAtCompileTime, |
| AutoAlign | ColMajor, |
| ei_traits<T>::MaxRowsAtCompileTime, |
| ei_traits<T>::MaxColsAtCompileTime |
| > type; |
| }; |
| |
| /* ei_plain_matrix_type_row_major : same as ei_plain_matrix_type but guaranteed to be row-major |
| */ |
| template<typename T> struct ei_plain_matrix_type_row_major |
| { |
| typedef Matrix<typename ei_traits<T>::Scalar, |
| ei_traits<T>::RowsAtCompileTime, |
| ei_traits<T>::ColsAtCompileTime, |
| AutoAlign | RowMajor, |
| ei_traits<T>::MaxRowsAtCompileTime, |
| ei_traits<T>::MaxColsAtCompileTime |
| > type; |
| }; |
| |
| // we should be able to get rid of this one too |
| template<typename T> struct ei_must_nest_by_value { enum { ret = false }; }; |
| |
| /** |
| * The reference selector for template expressions. The idea is that we don't |
| * need to use references for expressions since they are light weight proxy |
| * objects which should generate no copying overhead. |
| **/ |
| template <typename T> |
| struct ei_ref_selector |
| { |
| typedef T type; |
| }; |
| |
| /** |
| * Matrices on the other hand side should only be copied, when it is sure |
| * we gain by copying (see arithmetic cost check and eval before nesting flag). |
| * Note: This is an optimization measure that comprises potential (though little) |
| * to create erroneous code. Any user, utilizing ei_nested outside of |
| * Eigen needs to take care that no references to temporaries are |
| * stored or that this potential danger is at least communicated |
| * to the user. |
| **/ |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct ei_ref_selector< Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| { |
| typedef Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> MatrixType; |
| typedef MatrixType const& type; |
| }; |
| |
| /** \internal Determines how a given expression should be nested into another one. |
| * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be |
| * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or |
| * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is |
| * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes |
| * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. |
| * |
| * \param T the type of the expression being nested |
| * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. |
| * |
| * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c). |
| * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it, |
| * the Product expression uses: ei_nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of |
| * ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand, |
| * since a is of type Matrix3d, the Product expression nests it as ei_nested<Matrix3d, 3>::ret, which turns out to be |
| * const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point |
| * in copying it into another matrix. |
| */ |
| template<typename T, int n=1, typename PlainMatrixType = typename ei_eval<T>::type> struct ei_nested |
| { |
| enum { |
| CostEval = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost), |
| CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost) |
| }; |
| |
| typedef typename ei_meta_if< |
| ( int(ei_traits<T>::Flags) & EvalBeforeNestingBit ) || |
| ( int(CostEval) <= int(CostNoEval) ), |
| PlainMatrixType, |
| typename ei_ref_selector<T>::type |
| >::ret type; |
| }; |
| |
| template<unsigned int Flags> struct ei_are_flags_consistent |
| { |
| enum { ret = true }; |
| }; |
| |
| /** \internal Helper base class to add a scalar multiple operator |
| * overloads for complex types */ |
| template<typename Derived,typename Scalar,typename OtherScalar, |
| bool EnableIt = !ei_is_same_type<Scalar,OtherScalar>::ret > |
| struct ei_special_scalar_op_base : public AnyMatrixBase<Derived> |
| { |
| // dummy operator* so that the |
| // "using ei_special_scalar_op_base::operator*" compiles |
| void operator*() const; |
| }; |
| |
| template<typename Derived,typename Scalar,typename OtherScalar> |
| struct ei_special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public AnyMatrixBase<Derived> |
| { |
| const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived> |
| operator*(const OtherScalar& scalar) const |
| { |
| return CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived> |
| (*static_cast<const Derived*>(this), ei_scalar_multiple2_op<Scalar,OtherScalar>(scalar)); |
| } |
| |
| inline friend const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived> |
| operator*(const OtherScalar& scalar, const Derived& matrix) |
| { return static_cast<const ei_special_scalar_op_base&>(matrix).operator*(scalar); } |
| }; |
| |
| /** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size |
| * TODO: could be a good idea to define a big ReturnType struct ?? |
| */ |
| template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType { |
| typedef Block<ExpressionType, RowsOrSize, Cols> Type; |
| }; |
| |
| template<typename ExpressionType> struct HNormalizedReturnType { |
| |
| enum { |
| SizeAtCompileTime = ExpressionType::SizeAtCompileTime, |
| SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 |
| }; |
| typedef Block<ExpressionType, |
| ei_traits<ExpressionType>::ColsAtCompileTime==1 ? SizeMinusOne : 1, |
| ei_traits<ExpressionType>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne; |
| typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<ExpressionType>::Scalar>, |
| StartMinusOne > Type; |
| }; |
| |
| template<typename XprType, typename CastType> struct ei_cast_return_type |
| { |
| typedef typename XprType::Scalar CurrentScalarType; |
| typedef typename ei_cleantype<CastType>::type _CastType; |
| typedef typename _CastType::Scalar NewScalarType; |
| typedef typename ei_meta_if<ei_is_same_type<CurrentScalarType,NewScalarType>::ret, |
| const XprType&,CastType>::ret type; |
| }; |
| |
| template <typename A, typename B> struct ei_promote_storage_type; |
| |
| template <typename A> struct ei_promote_storage_type<A,A> |
| { |
| typedef A ret; |
| }; |
| |
| #endif // EIGEN_XPRHELPER_H |