| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_INVERSE_H |
| #define EIGEN_INVERSE_H |
| |
| /********************************** |
| *** General case implementation *** |
| **********************************/ |
| |
| template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> |
| struct ei_compute_inverse |
| { |
| static inline void run(const MatrixType& matrix, ResultType& result) |
| { |
| result = matrix.partialPivLu().inverse(); |
| } |
| }; |
| |
| template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> |
| struct ei_compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; |
| |
| /**************************** |
| *** Size 1 implementation *** |
| ****************************/ |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse<MatrixType, ResultType, 1> |
| { |
| static inline void run(const MatrixType& matrix, ResultType& result) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0); |
| } |
| }; |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 1> |
| { |
| static inline void run( |
| const MatrixType& matrix, |
| const typename MatrixType::RealScalar& absDeterminantThreshold, |
| ResultType& result, |
| typename ResultType::Scalar& determinant, |
| bool& invertible |
| ) |
| { |
| determinant = matrix.coeff(0,0); |
| invertible = ei_abs(determinant) > absDeterminantThreshold; |
| if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; |
| } |
| }; |
| |
| /**************************** |
| *** Size 2 implementation *** |
| ****************************/ |
| |
| template<typename MatrixType, typename ResultType> |
| inline void ei_compute_inverse_size2_helper( |
| const MatrixType& matrix, const typename ResultType::Scalar& invdet, |
| ResultType& result) |
| { |
| result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; |
| result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; |
| result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; |
| result.coeffRef(1,1) = matrix.coeff(0,0) * invdet; |
| } |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse<MatrixType, ResultType, 2> |
| { |
| static inline void run(const MatrixType& matrix, ResultType& result) |
| { |
| typedef typename ResultType::Scalar Scalar; |
| const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); |
| ei_compute_inverse_size2_helper(matrix, invdet, result); |
| } |
| }; |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 2> |
| { |
| static inline void run( |
| const MatrixType& matrix, |
| const typename MatrixType::RealScalar& absDeterminantThreshold, |
| ResultType& inverse, |
| typename ResultType::Scalar& determinant, |
| bool& invertible |
| ) |
| { |
| typedef typename ResultType::Scalar Scalar; |
| determinant = matrix.determinant(); |
| invertible = ei_abs(determinant) > absDeterminantThreshold; |
| if(!invertible) return; |
| const Scalar invdet = Scalar(1) / determinant; |
| ei_compute_inverse_size2_helper(matrix, invdet, inverse); |
| } |
| }; |
| |
| /**************************** |
| *** Size 3 implementation *** |
| ****************************/ |
| |
| template<typename MatrixType, typename ResultType> |
| void ei_compute_inverse_size3_helper( |
| const MatrixType& matrix, |
| const typename ResultType::Scalar& invdet, |
| const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0, |
| ResultType& result) |
| { |
| result.row(0) = cofactors_col0 * invdet; |
| result.coeffRef(1,0) = -matrix.minor(0,1).determinant() * invdet; |
| result.coeffRef(1,1) = matrix.minor(1,1).determinant() * invdet; |
| result.coeffRef(1,2) = -matrix.minor(2,1).determinant() * invdet; |
| result.coeffRef(2,0) = matrix.minor(0,2).determinant() * invdet; |
| result.coeffRef(2,1) = -matrix.minor(1,2).determinant() * invdet; |
| result.coeffRef(2,2) = matrix.minor(2,2).determinant() * invdet; |
| } |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse<MatrixType, ResultType, 3> |
| { |
| static inline void run(const MatrixType& matrix, ResultType& result) |
| { |
| typedef typename ResultType::Scalar Scalar; |
| Matrix<Scalar,3,1> cofactors_col0; |
| cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant(); |
| cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant(); |
| cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant(); |
| const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); |
| const Scalar invdet = Scalar(1) / det; |
| ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); |
| } |
| }; |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 3> |
| { |
| static inline void run( |
| const MatrixType& matrix, |
| const typename MatrixType::RealScalar& absDeterminantThreshold, |
| ResultType& inverse, |
| typename ResultType::Scalar& determinant, |
| bool& invertible |
| ) |
| { |
| typedef typename ResultType::Scalar Scalar; |
| Matrix<Scalar,3,1> cofactors_col0; |
| cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant(); |
| cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant(); |
| cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant(); |
| determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); |
| invertible = ei_abs(determinant) > absDeterminantThreshold; |
| if(!invertible) return; |
| const Scalar invdet = Scalar(1) / determinant; |
| ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); |
| } |
| }; |
| |
| /**************************** |
| *** Size 4 implementation *** |
| ****************************/ |
| |
| template<int Arch, typename Scalar, typename MatrixType, typename ResultType> |
| struct ei_compute_inverse_size4 |
| { |
| static void run(const MatrixType& matrix, ResultType& result) |
| { |
| result.coeffRef(0,0) = matrix.minor(0,0).determinant(); |
| result.coeffRef(1,0) = -matrix.minor(0,1).determinant(); |
| result.coeffRef(2,0) = matrix.minor(0,2).determinant(); |
| result.coeffRef(3,0) = -matrix.minor(0,3).determinant(); |
| result.coeffRef(0,2) = matrix.minor(2,0).determinant(); |
| result.coeffRef(1,2) = -matrix.minor(2,1).determinant(); |
| result.coeffRef(2,2) = matrix.minor(2,2).determinant(); |
| result.coeffRef(3,2) = -matrix.minor(2,3).determinant(); |
| result.coeffRef(0,1) = -matrix.minor(1,0).determinant(); |
| result.coeffRef(1,1) = matrix.minor(1,1).determinant(); |
| result.coeffRef(2,1) = -matrix.minor(1,2).determinant(); |
| result.coeffRef(3,1) = matrix.minor(1,3).determinant(); |
| result.coeffRef(0,3) = -matrix.minor(3,0).determinant(); |
| result.coeffRef(1,3) = matrix.minor(3,1).determinant(); |
| result.coeffRef(2,3) = -matrix.minor(3,2).determinant(); |
| result.coeffRef(3,3) = matrix.minor(3,3).determinant(); |
| result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); |
| } |
| }; |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse<MatrixType, ResultType, 4> |
| : ei_compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, |
| MatrixType, ResultType> |
| { |
| }; |
| |
| template<typename MatrixType, typename ResultType> |
| struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 4> |
| { |
| static inline void run( |
| const MatrixType& matrix, |
| const typename MatrixType::RealScalar& absDeterminantThreshold, |
| ResultType& inverse, |
| typename ResultType::Scalar& determinant, |
| bool& invertible |
| ) |
| { |
| determinant = matrix.determinant(); |
| invertible = ei_abs(determinant) > absDeterminantThreshold; |
| if(invertible) ei_compute_inverse<MatrixType, ResultType>::run(matrix, inverse); |
| } |
| }; |
| |
| /************************* |
| *** MatrixBase methods *** |
| *************************/ |
| |
| template<typename MatrixType> |
| struct ei_traits<ei_inverse_impl<MatrixType> > |
| { |
| typedef typename MatrixType::PlainMatrixType ReturnMatrixType; |
| }; |
| |
| template<typename MatrixType> |
| struct ei_inverse_impl : public ReturnByValue<ei_inverse_impl<MatrixType> > |
| { |
| // for 2x2, it's worth giving a chance to avoid evaluating. |
| // for larger sizes, evaluating has negligible cost, limits code size, |
| // and allows for vectorized paths. |
| typedef typename ei_meta_if< |
| MatrixType::RowsAtCompileTime == 2, |
| typename ei_nested<MatrixType,2>::type, |
| typename ei_eval<MatrixType>::type |
| >::ret MatrixTypeNested; |
| typedef typename ei_cleantype<MatrixTypeNested>::type MatrixTypeNestedCleaned; |
| const MatrixTypeNested m_matrix; |
| |
| ei_inverse_impl(const MatrixType& matrix) |
| : m_matrix(matrix) |
| {} |
| |
| inline int rows() const { return m_matrix.rows(); } |
| inline int cols() const { return m_matrix.cols(); } |
| |
| template<typename Dest> inline void evalTo(Dest& dst) const |
| { |
| ei_compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst); |
| } |
| }; |
| |
| /** \lu_module |
| * |
| * \returns the matrix inverse of this matrix. |
| * |
| * For small fixed sizes up to 4x4, this method uses cofactors. |
| * In the general case, this method uses class PartialPivLU. |
| * |
| * \note This matrix must be invertible, otherwise the result is undefined. If you need an |
| * invertibility check, do the following: |
| * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). |
| * \li for the general case, use class FullPivLU. |
| * |
| * Example: \include MatrixBase_inverse.cpp |
| * Output: \verbinclude MatrixBase_inverse.out |
| * |
| * \sa computeInverseAndDetWithCheck() |
| */ |
| template<typename Derived> |
| inline const ei_inverse_impl<Derived> MatrixBase<Derived>::inverse() const |
| { |
| EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT) |
| ei_assert(rows() == cols()); |
| return ei_inverse_impl<Derived>(derived()); |
| } |
| |
| /** \lu_module |
| * |
| * Computation of matrix inverse and determinant, with invertibility check. |
| * |
| * This is only for fixed-size square matrices of size up to 4x4. |
| * |
| * \param inverse Reference to the matrix in which to store the inverse. |
| * \param determinant Reference to the variable in which to store the inverse. |
| * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. |
| * \param absDeterminantThreshold Optional parameter controlling the invertibility check. |
| * The matrix will be declared invertible if the absolute value of its |
| * determinant is greater than this threshold. |
| * |
| * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp |
| * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out |
| * |
| * \sa inverse(), computeInverseWithCheck() |
| */ |
| template<typename Derived> |
| template<typename ResultType> |
| inline void MatrixBase<Derived>::computeInverseAndDetWithCheck( |
| ResultType& inverse, |
| typename ResultType::Scalar& determinant, |
| bool& invertible, |
| const RealScalar& absDeterminantThreshold |
| ) const |
| { |
| // i'd love to put some static assertions there, but SFINAE means that they have no effect... |
| ei_assert(rows() == cols()); |
| // for 2x2, it's worth giving a chance to avoid evaluating. |
| // for larger sizes, evaluating has negligible cost and limits code size. |
| typedef typename ei_meta_if< |
| RowsAtCompileTime == 2, |
| typename ei_cleantype<typename ei_nested<Derived, 2>::type>::type, |
| PlainMatrixType |
| >::ret MatrixType; |
| ei_compute_inverse_and_det_with_check<MatrixType, ResultType>::run |
| (derived(), absDeterminantThreshold, inverse, determinant, invertible); |
| } |
| |
| /** \lu_module |
| * |
| * Computation of matrix inverse, with invertibility check. |
| * |
| * This is only for fixed-size square matrices of size up to 4x4. |
| * |
| * \param inverse Reference to the matrix in which to store the inverse. |
| * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. |
| * \param absDeterminantThreshold Optional parameter controlling the invertibility check. |
| * The matrix will be declared invertible if the absolute value of its |
| * determinant is greater than this threshold. |
| * |
| * Example: \include MatrixBase_computeInverseWithCheck.cpp |
| * Output: \verbinclude MatrixBase_computeInverseWithCheck.out |
| * |
| * \sa inverse(), computeInverseAndDetWithCheck() |
| */ |
| template<typename Derived> |
| template<typename ResultType> |
| inline void MatrixBase<Derived>::computeInverseWithCheck( |
| ResultType& inverse, |
| bool& invertible, |
| const RealScalar& absDeterminantThreshold |
| ) const |
| { |
| RealScalar determinant; |
| // i'd love to put some static assertions there, but SFINAE means that they have no effect... |
| ei_assert(rows() == cols()); |
| computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); |
| } |
| |
| #endif // EIGEN_INVERSE_H |