|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_DOT_H | 
|  | #define EIGEN_DOT_H | 
|  |  | 
|  | // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot | 
|  | // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE | 
|  | // looking at the static assertions. Thus this is a trick to get better compile errors. | 
|  | template<typename T, typename U, | 
|  | // the NeedToTranspose condition here is taken straight from Assign.h | 
|  | bool NeedToTranspose = T::IsVectorAtCompileTime | 
|  | && U::IsVectorAtCompileTime | 
|  | && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) | 
|  | |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". | 
|  | // revert to || as soon as not needed anymore. | 
|  | (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1)) | 
|  | > | 
|  | struct ei_dot_nocheck | 
|  | { | 
|  | static inline typename ei_traits<T>::Scalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) | 
|  | { | 
|  | return a.conjugate().cwiseProduct(b).sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T, typename U> | 
|  | struct ei_dot_nocheck<T, U, true> | 
|  | { | 
|  | static inline typename ei_traits<T>::Scalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) | 
|  | { | 
|  | return a.adjoint().cwiseProduct(b).sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \returns the dot product of *this with other. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \note If the scalar type is complex numbers, then this function returns the hermitian | 
|  | * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the | 
|  | * second variable. | 
|  | * | 
|  | * \sa squaredNorm(), norm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherDerived> | 
|  | typename ei_traits<Derived>::Scalar | 
|  | MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) | 
|  | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) | 
|  | EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  |  | 
|  | ei_assert(size() == other.size()); | 
|  |  | 
|  | return ei_dot_nocheck<Derived,OtherDerived>::run(*this, other); | 
|  | } | 
|  |  | 
|  | //---------- implementation of L2 norm and related functions ---------- | 
|  |  | 
|  | /** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself. | 
|  | * | 
|  | * \sa dot(), norm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const | 
|  | { | 
|  | return ei_real((*this).cwiseAbs2().sum()); | 
|  | } | 
|  |  | 
|  | /** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself. | 
|  | * | 
|  | * \sa dot(), squaredNorm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const | 
|  | { | 
|  | return ei_sqrt(squaredNorm()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the quotient of *this by its own norm. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \sa norm(), normalize() | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const typename MatrixBase<Derived>::PlainObject | 
|  | MatrixBase<Derived>::normalized() const | 
|  | { | 
|  | typedef typename ei_nested<Derived>::type Nested; | 
|  | typedef typename ei_unref<Nested>::type _Nested; | 
|  | _Nested n(derived()); | 
|  | return n / n.norm(); | 
|  | } | 
|  |  | 
|  | /** Normalizes the vector, i.e. divides it by its own norm. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \sa norm(), normalized() | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline void MatrixBase<Derived>::normalize() | 
|  | { | 
|  | *this /= norm(); | 
|  | } | 
|  |  | 
|  | //---------- implementation of other norms ---------- | 
|  |  | 
|  | template<typename Derived, int p> | 
|  | struct ei_lpNorm_selector | 
|  | { | 
|  | typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar; | 
|  | inline static RealScalar run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | return ei_pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct ei_lpNorm_selector<Derived, 1> | 
|  | { | 
|  | inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | return m.cwiseAbs().sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct ei_lpNorm_selector<Derived, 2> | 
|  | { | 
|  | inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | return m.norm(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct ei_lpNorm_selector<Derived, Infinity> | 
|  | { | 
|  | inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | return m.cwiseAbs().maxCoeff(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values | 
|  | *          of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$ | 
|  | *          norm, that is the maximum of the absolute values of the coefficients of *this. | 
|  | * | 
|  | * \sa norm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<int p> | 
|  | inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real | 
|  | MatrixBase<Derived>::lpNorm() const | 
|  | { | 
|  | return ei_lpNorm_selector<Derived, p>::run(*this); | 
|  | } | 
|  |  | 
|  | //---------- implementation of isOrthogonal / isUnitary ---------- | 
|  |  | 
|  | /** \returns true if *this is approximately orthogonal to \a other, | 
|  | *          within the precision given by \a prec. | 
|  | * | 
|  | * Example: \include MatrixBase_isOrthogonal.cpp | 
|  | * Output: \verbinclude MatrixBase_isOrthogonal.out | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherDerived> | 
|  | bool MatrixBase<Derived>::isOrthogonal | 
|  | (const MatrixBase<OtherDerived>& other, RealScalar prec) const | 
|  | { | 
|  | typename ei_nested<Derived,2>::type nested(derived()); | 
|  | typename ei_nested<OtherDerived,2>::type otherNested(other.derived()); | 
|  | return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); | 
|  | } | 
|  |  | 
|  | /** \returns true if *this is approximately an unitary matrix, | 
|  | *          within the precision given by \a prec. In the case where the \a Scalar | 
|  | *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. | 
|  | * | 
|  | * \note This can be used to check whether a family of vectors forms an orthonormal basis. | 
|  | *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an | 
|  | *       orthonormal basis. | 
|  | * | 
|  | * Example: \include MatrixBase_isUnitary.cpp | 
|  | * Output: \verbinclude MatrixBase_isUnitary.out | 
|  | */ | 
|  | template<typename Derived> | 
|  | bool MatrixBase<Derived>::isUnitary(RealScalar prec) const | 
|  | { | 
|  | typename Derived::Nested nested(derived()); | 
|  | for(Index i = 0; i < cols(); ++i) | 
|  | { | 
|  | if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) | 
|  | return false; | 
|  | for(Index j = 0; j < i; ++j) | 
|  | if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_DOT_H |