| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_ANGLEAXIS_H | 
 | #define EIGEN_ANGLEAXIS_H | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \class AngleAxis | 
 |   * | 
 |   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis | 
 |   * | 
 |   * \param _Scalar the scalar type, i.e., the type of the coefficients. | 
 |   * | 
 |   * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. | 
 |   * | 
 |   * The following two typedefs are provided for convenience: | 
 |   * \li \c AngleAxisf for \c float | 
 |   * \li \c AngleAxisd for \c double | 
 |   * | 
 |   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily | 
 |   * mimic Euler-angles. Here is an example: | 
 |   * \include AngleAxis_mimic_euler.cpp | 
 |   * Output: \verbinclude AngleAxis_mimic_euler.out | 
 |   * | 
 |   * \note This class is not aimed to be used to store a rotation transformation, | 
 |   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) | 
 |   * and transformation objects. | 
 |   * | 
 |   * \sa class Quaternion, class Transform, MatrixBase::UnitX() | 
 |   */ | 
 |  | 
 | template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> > | 
 | { | 
 |   typedef _Scalar Scalar; | 
 | }; | 
 |  | 
 | template<typename _Scalar> | 
 | class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> | 
 | { | 
 |   typedef RotationBase<AngleAxis<_Scalar>,3> Base; | 
 |  | 
 | public: | 
 |  | 
 |   using Base::operator*; | 
 |  | 
 |   enum { Dim = 3 }; | 
 |   /** the scalar type of the coefficients */ | 
 |   typedef _Scalar Scalar; | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef Quaternion<Scalar> QuaternionType; | 
 |  | 
 | protected: | 
 |  | 
 |   Vector3 m_axis; | 
 |   Scalar m_angle; | 
 |  | 
 | public: | 
 |  | 
 |   /** Default constructor without initialization. */ | 
 |   AngleAxis() {} | 
 |   /** Constructs and initialize the angle-axis rotation from an \a angle in radian | 
 |     * and an \a axis which \b must \b be \b normalized. | 
 |     * | 
 |     * \warning If the \a axis vector is not normalized, then the angle-axis object | 
 |     *          represents an invalid rotation. */ | 
 |   template<typename Derived> | 
 |   inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} | 
 |   /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ | 
 |   template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } | 
 |   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ | 
 |   template<typename Derived> | 
 |   inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } | 
 |  | 
 |   Scalar angle() const { return m_angle; } | 
 |   Scalar& angle() { return m_angle; } | 
 |  | 
 |   const Vector3& axis() const { return m_axis; } | 
 |   Vector3& axis() { return m_axis; } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   inline QuaternionType operator* (const AngleAxis& other) const | 
 |   { return QuaternionType(*this) * QuaternionType(other); } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   inline QuaternionType operator* (const QuaternionType& other) const | 
 |   { return QuaternionType(*this) * other; } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) | 
 |   { return a * QuaternionType(b); } | 
 |  | 
 |   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ | 
 |   AngleAxis inverse() const | 
 |   { return AngleAxis(-m_angle, m_axis); } | 
 |  | 
 |   template<class QuatDerived> | 
 |   AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); | 
 |   template<typename Derived> | 
 |   AngleAxis& operator=(const MatrixBase<Derived>& m); | 
 |  | 
 |   template<typename Derived> | 
 |   AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); | 
 |   Matrix3 toRotationMatrix(void) const; | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |     * | 
 |     * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |     * then this function smartly returns a const reference to \c *this. | 
 |     */ | 
 |   template<typename NewScalarType> | 
 |   inline typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const | 
 |   { return typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } | 
 |  | 
 |   /** Copy constructor with scalar type conversion */ | 
 |   template<typename OtherScalarType> | 
 |   inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) | 
 |   { | 
 |     m_axis = other.axis().template cast<Scalar>(); | 
 |     m_angle = Scalar(other.angle()); | 
 |   } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |     * determined by \a prec. | 
 |     * | 
 |     * \sa MatrixBase::isApprox() */ | 
 |   bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const | 
 |   { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); } | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |   * single precision angle-axis type */ | 
 | typedef AngleAxis<float> AngleAxisf; | 
 | /** \ingroup Geometry_Module | 
 |   * double precision angle-axis type */ | 
 | typedef AngleAxis<double> AngleAxisd; | 
 |  | 
 | /** Set \c *this from a quaternion. | 
 |   * The axis is normalized. | 
 |   */ | 
 | template<typename Scalar> | 
 | template<typename QuatDerived> | 
 | AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) | 
 | { | 
 |   Scalar n2 = q.vec().squaredNorm(); | 
 |   if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision()) | 
 |   { | 
 |     m_angle = 0; | 
 |     m_axis << 1, 0, 0; | 
 |   } | 
 |   else | 
 |   { | 
 |     m_angle = 2*std::acos(q.w()); | 
 |     m_axis = q.vec() / ei_sqrt(n2); | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | /** Set \c *this from a 3x3 rotation matrix \a mat. | 
 |   */ | 
 | template<typename Scalar> | 
 | template<typename Derived> | 
 | AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) | 
 | { | 
 |   // Since a direct conversion would not be really faster, | 
 |   // let's use the robust Quaternion implementation: | 
 |   return *this = QuaternionType(mat); | 
 | } | 
 |  | 
 | /** | 
 | * \brief Sets \c *this from a 3x3 rotation matrix. | 
 | **/ | 
 | template<typename Scalar> | 
 | template<typename Derived> | 
 | AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) | 
 | { | 
 |   return *this = QuaternionType(mat); | 
 | } | 
 |  | 
 | /** Constructs and \returns an equivalent 3x3 rotation matrix. | 
 |   */ | 
 | template<typename Scalar> | 
 | typename AngleAxis<Scalar>::Matrix3 | 
 | AngleAxis<Scalar>::toRotationMatrix(void) const | 
 | { | 
 |   Matrix3 res; | 
 |   Vector3 sin_axis  = ei_sin(m_angle) * m_axis; | 
 |   Scalar c = ei_cos(m_angle); | 
 |   Vector3 cos1_axis = (Scalar(1)-c) * m_axis; | 
 |  | 
 |   Scalar tmp; | 
 |   tmp = cos1_axis.x() * m_axis.y(); | 
 |   res.coeffRef(0,1) = tmp - sin_axis.z(); | 
 |   res.coeffRef(1,0) = tmp + sin_axis.z(); | 
 |  | 
 |   tmp = cos1_axis.x() * m_axis.z(); | 
 |   res.coeffRef(0,2) = tmp + sin_axis.y(); | 
 |   res.coeffRef(2,0) = tmp - sin_axis.y(); | 
 |  | 
 |   tmp = cos1_axis.y() * m_axis.z(); | 
 |   res.coeffRef(1,2) = tmp - sin_axis.x(); | 
 |   res.coeffRef(2,1) = tmp + sin_axis.x(); | 
 |  | 
 |   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | #endif // EIGEN_ANGLEAXIS_H |