| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_QUATERNION_H | 
 | #define EIGEN_QUATERNION_H | 
 |  | 
 | /*************************************************************************** | 
 | * Definition of QuaternionBase<Derived> | 
 | * The implementation is at the end of the file | 
 | ***************************************************************************/ | 
 |  | 
 | template<typename Other, | 
 |          int OtherRows=Other::RowsAtCompileTime, | 
 |          int OtherCols=Other::ColsAtCompileTime> | 
 | struct ei_quaternionbase_assign_impl; | 
 |  | 
 | template<class Derived> | 
 | class QuaternionBase : public RotationBase<Derived, 3> | 
 | { | 
 |   typedef RotationBase<Derived, 3> Base; | 
 | public: | 
 |   using Base::operator*; | 
 |   using Base::derived; | 
 |  | 
 |   typedef typename ei_traits<Derived>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef typename ei_traits<Derived>::Coefficients Coefficients; | 
 |  | 
 |  // typedef typename Matrix<Scalar,4,1> Coefficients; | 
 |   /** the type of a 3D vector */ | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   /** the equivalent rotation matrix type */ | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   /** the equivalent angle-axis type */ | 
 |   typedef AngleAxis<Scalar> AngleAxisType; | 
 |  | 
 |  | 
 |  | 
 |   /** \returns the \c x coefficient */ | 
 |   inline Scalar x() const { return this->derived().coeffs().coeff(0); } | 
 |   /** \returns the \c y coefficient */ | 
 |   inline Scalar y() const { return this->derived().coeffs().coeff(1); } | 
 |   /** \returns the \c z coefficient */ | 
 |   inline Scalar z() const { return this->derived().coeffs().coeff(2); } | 
 |   /** \returns the \c w coefficient */ | 
 |   inline Scalar w() const { return this->derived().coeffs().coeff(3); } | 
 |  | 
 |   /** \returns a reference to the \c x coefficient */ | 
 |   inline Scalar& x() { return this->derived().coeffs().coeffRef(0); } | 
 |   /** \returns a reference to the \c y coefficient */ | 
 |   inline Scalar& y() { return this->derived().coeffs().coeffRef(1); } | 
 |   /** \returns a reference to the \c z coefficient */ | 
 |   inline Scalar& z() { return this->derived().coeffs().coeffRef(2); } | 
 |   /** \returns a reference to the \c w coefficient */ | 
 |   inline Scalar& w() { return this->derived().coeffs().coeffRef(3); } | 
 |  | 
 |   /** \returns a read-only vector expression of the imaginary part (x,y,z) */ | 
 |   inline const VectorBlock<Coefficients,3> vec() const { return coeffs().template head<3>(); } | 
 |  | 
 |   /** \returns a vector expression of the imaginary part (x,y,z) */ | 
 |   inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } | 
 |  | 
 |   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ | 
 |   inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } | 
 |  | 
 |   /** \returns a vector expression of the coefficients (x,y,z,w) */ | 
 |   inline typename ei_traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } | 
 |  | 
 |   EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); | 
 |   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); | 
 |  | 
 | // disabled this copy operator as it is giving very strange compilation errors when compiling | 
 | // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's | 
 | // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase | 
 | // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. | 
 | //  Derived& operator=(const QuaternionBase& other) | 
 | //  { return operator=<Derived>(other); } | 
 |  | 
 |   Derived& operator=(const AngleAxisType& aa); | 
 |   template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m); | 
 |  | 
 |   /** \returns a quaternion representing an identity rotation | 
 |     * \sa MatrixBase::Identity() | 
 |     */ | 
 |   inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); } | 
 |  | 
 |   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() | 
 |     */ | 
 |   inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; } | 
 |  | 
 |   /** \returns the squared norm of the quaternion's coefficients | 
 |     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() | 
 |     */ | 
 |   inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } | 
 |  | 
 |   /** \returns the norm of the quaternion's coefficients | 
 |     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() | 
 |     */ | 
 |   inline Scalar norm() const { return coeffs().norm(); } | 
 |  | 
 |   /** Normalizes the quaternion \c *this | 
 |     * \sa normalized(), MatrixBase::normalize() */ | 
 |   inline void normalize() { coeffs().normalize(); } | 
 |   /** \returns a normalized copy of \c *this | 
 |     * \sa normalize(), MatrixBase::normalized() */ | 
 |   inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } | 
 |  | 
 |     /** \returns the dot product of \c *this and \a other | 
 |     * Geometrically speaking, the dot product of two unit quaternions | 
 |     * corresponds to the cosine of half the angle between the two rotations. | 
 |     * \sa angularDistance() | 
 |     */ | 
 |   template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } | 
 |  | 
 |   template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; | 
 |  | 
 |   /** \returns an equivalent 3x3 rotation matrix */ | 
 |   Matrix3 toRotationMatrix() const; | 
 |  | 
 |   /** \returns the quaternion which transform \a a into \a b through a rotation */ | 
 |   template<typename Derived1, typename Derived2> | 
 |   Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
 |  | 
 |   template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; | 
 |   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); | 
 |  | 
 |   /** \returns the quaternion describing the inverse rotation */ | 
 |   Quaternion<Scalar> inverse() const; | 
 |  | 
 |   /** \returns the conjugated quaternion */ | 
 |   Quaternion<Scalar> conjugate() const; | 
 |  | 
 |   /** \returns an interpolation for a constant motion between \a other and \c *this | 
 |     * \a t in [0;1] | 
 |     * see http://en.wikipedia.org/wiki/Slerp | 
 |     */ | 
 |   template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const; | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |     * determined by \a prec. | 
 |     * | 
 |     * \sa MatrixBase::isApprox() */ | 
 |   template<class OtherDerived> | 
 |   bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const | 
 |   { return coeffs().isApprox(other.coeffs(), prec); } | 
 |  | 
 | 	/** return the result vector of \a v through the rotation*/ | 
 |   EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const; | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |     * | 
 |     * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |     * then this function smartly returns a const reference to \c *this. | 
 |     */ | 
 |   template<typename NewScalarType> | 
 |   inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const | 
 |   { | 
 |     return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type( | 
 |       coeffs().template cast<NewScalarType>()); | 
 |   } | 
 | }; | 
 |  | 
 | /*************************************************************************** | 
 | * Definition/implementation of Quaternion<Scalar> | 
 | ***************************************************************************/ | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \class Quaternion | 
 |   * | 
 |   * \brief The quaternion class used to represent 3D orientations and rotations | 
 |   * | 
 |   * \param _Scalar the scalar type, i.e., the type of the coefficients | 
 |   * | 
 |   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of | 
 |   * orientations and rotations of objects in three dimensions. Compared to other representations | 
 |   * like Euler angles or 3x3 matrices, quatertions offer the following advantages: | 
 |   * \li \b compact storage (4 scalars) | 
 |   * \li \b efficient to compose (28 flops), | 
 |   * \li \b stable spherical interpolation | 
 |   * | 
 |   * The following two typedefs are provided for convenience: | 
 |   * \li \c Quaternionf for \c float | 
 |   * \li \c Quaterniond for \c double | 
 |   * | 
 |   * \sa  class AngleAxis, class Transform | 
 |   */ | 
 |  | 
 | template<typename _Scalar> | 
 | struct ei_traits<Quaternion<_Scalar> > | 
 | { | 
 |   typedef Quaternion<_Scalar> PlainObject; | 
 |   typedef _Scalar Scalar; | 
 |   typedef Matrix<_Scalar,4,1> Coefficients; | 
 |   enum{ | 
 |     PacketAccess = Aligned | 
 |   }; | 
 | }; | 
 |  | 
 | template<typename _Scalar> | 
 | class Quaternion : public QuaternionBase<Quaternion<_Scalar> >{ | 
 |   typedef QuaternionBase<Quaternion<_Scalar> > Base; | 
 | public: | 
 |   typedef _Scalar Scalar; | 
 |  | 
 |   EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion<Scalar>) | 
 |   using Base::operator*=; | 
 |  | 
 |   typedef typename ei_traits<Quaternion<Scalar> >::Coefficients Coefficients; | 
 |   typedef typename Base::AngleAxisType AngleAxisType; | 
 |  | 
 |   /** Default constructor leaving the quaternion uninitialized. */ | 
 |   inline Quaternion() {} | 
 |  | 
 |   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from | 
 |     * its four coefficients \a w, \a x, \a y and \a z. | 
 |     * | 
 |     * \warning Note the order of the arguments: the real \a w coefficient first, | 
 |     * while internally the coefficients are stored in the following order: | 
 |     * [\c x, \c y, \c z, \c w] | 
 |     */ | 
 |   inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){} | 
 |  | 
 |   /** Constructs and initialize a quaternion from the array data */ | 
 |   inline Quaternion(const Scalar* data) : m_coeffs(data) {} | 
 |  | 
 |   /** Copy constructor */ | 
 |   template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } | 
 |  | 
 |   /** Constructs and initializes a quaternion from the angle-axis \a aa */ | 
 |   explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } | 
 |  | 
 |   /** Constructs and initializes a quaternion from either: | 
 |     *  - a rotation matrix expression, | 
 |     *  - a 4D vector expression representing quaternion coefficients. | 
 |     */ | 
 |   template<typename Derived> | 
 |   explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } | 
 |  | 
 |   inline Coefficients& coeffs() { return m_coeffs;} | 
 |   inline const Coefficients& coeffs() const { return m_coeffs;} | 
 |  | 
 | protected: | 
 |   Coefficients m_coeffs; | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |   * single precision quaternion type */ | 
 | typedef Quaternion<float> Quaternionf; | 
 | /** \ingroup Geometry_Module | 
 |   * double precision quaternion type */ | 
 | typedef Quaternion<double> Quaterniond; | 
 |  | 
 | /*************************************************************************** | 
 | * Specialization of Map<Quaternion<Scalar>> | 
 | ***************************************************************************/ | 
 |  | 
 | /** \class Map<Quaternion> | 
 |   * \nonstableyet | 
 |   * | 
 |   * \brief Expression of a quaternion from a memory buffer | 
 |   * | 
 |   * \param _Scalar the type of the Quaternion coefficients | 
 |   * \param PacketAccess see class Map | 
 |   * | 
 |   * This is a specialization of class Map for Quaternion. This class allows to view | 
 |   * a 4 scalar memory buffer as an Eigen's  Quaternion object. | 
 |   * | 
 |   * \sa class Map, class Quaternion, class QuaternionBase | 
 |   */ | 
 | template<typename _Scalar, int _PacketAccess> | 
 | struct ei_traits<Map<Quaternion<_Scalar>, _PacketAccess> >: | 
 | ei_traits<Quaternion<_Scalar> > | 
 | { | 
 |   typedef _Scalar Scalar; | 
 |   typedef Map<Matrix<_Scalar,4,1>, _PacketAccess> Coefficients; | 
 |   enum { | 
 |     PacketAccess = _PacketAccess | 
 |   }; | 
 | }; | 
 |  | 
 | template<typename _Scalar, int PacketAccess> | 
 | class Map<Quaternion<_Scalar>, PacketAccess > | 
 |   : public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> > | 
 | { | 
 |     typedef QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> > Base; | 
 |  | 
 |   public: | 
 |     typedef _Scalar Scalar; | 
 |     typedef typename ei_traits<Map>::Coefficients Coefficients; | 
 |     EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) | 
 |     using Base::operator*=; | 
 |  | 
 |     /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
 |       * | 
 |       * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: | 
 |       * \code *coeffs == {x, y, z, w} \endcode | 
 |       * | 
 |       * If the template parameter PacketAccess is set to Aligned, then the pointer coeffs must be aligned. */ | 
 |     EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} | 
 |  | 
 |     inline Coefficients& coeffs() { return m_coeffs;} | 
 |     inline const Coefficients& coeffs() const { return m_coeffs;} | 
 |  | 
 |   protected: | 
 |     Coefficients m_coeffs; | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |   * Map an unaligned array of single precision scalar as a quaternion */ | 
 | typedef Map<Quaternion<float>, 0>         QuaternionMapf; | 
 | /** \ingroup Geometry_Module | 
 |   * Map an unaligned array of double precision scalar as a quaternion */ | 
 | typedef Map<Quaternion<double>, 0>        QuaternionMapd; | 
 | /** \ingroup Geometry_Module | 
 |   * Map a 16-bits aligned array of double precision scalars as a quaternion */ | 
 | typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf; | 
 | /** \ingroup Geometry_Module | 
 |   * Map a 16-bits aligned array of double precision scalars as a quaternion */ | 
 | typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd; | 
 |  | 
 | /*************************************************************************** | 
 | * Implementation of QuaternionBase methods | 
 | ***************************************************************************/ | 
 |  | 
 | // Generic Quaternion * Quaternion product | 
 | // This product can be specialized for a given architecture via the Arch template argument. | 
 | template<int Arch, class Derived1, class Derived2, typename Scalar, int PacketAccess> struct ei_quat_product | 
 | { | 
 |   EIGEN_STRONG_INLINE static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ | 
 |     return Quaternion<Scalar> | 
 |     ( | 
 |       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), | 
 |       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), | 
 |       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), | 
 |       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() | 
 |     ); | 
 |   } | 
 | }; | 
 |  | 
 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_STRONG_INLINE Quaternion<typename ei_traits<Derived>::Scalar> | 
 | QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret), | 
 |    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |   return ei_quat_product<Architecture::Target, Derived, OtherDerived, | 
 |                          typename ei_traits<Derived>::Scalar, | 
 |                          ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other); | 
 | } | 
 |  | 
 | /** \sa operator*(Quaternion) */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) | 
 | { | 
 |   derived() = derived() * other.derived(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Rotation of a vector by a quaternion. | 
 |   * \remarks If the quaternion is used to rotate several points (>1) | 
 |   * then it is much more efficient to first convert it to a 3x3 Matrix. | 
 |   * Comparison of the operation cost for n transformations: | 
 |   *   - Quaternion2:    30n | 
 |   *   - Via a Matrix3: 24 + 15n | 
 |   */ | 
 | template <class Derived> | 
 | EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 | 
 | QuaternionBase<Derived>::_transformVector(Vector3 v) const | 
 | { | 
 |     // Note that this algorithm comes from the optimization by hand | 
 |     // of the conversion to a Matrix followed by a Matrix/Vector product. | 
 |     // It appears to be much faster than the common algorithm found | 
 |     // in the litterature (30 versus 39 flops). It also requires two | 
 |     // Vector3 as temporaries. | 
 |     Vector3 uv = Scalar(2) * this->vec().cross(v); | 
 |     return v + this->w() * uv + this->vec().cross(uv); | 
 | } | 
 |  | 
 | template<class Derived> | 
 | EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) | 
 | { | 
 |   coeffs() = other.coeffs(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<class Derived> | 
 | template<class OtherDerived> | 
 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) | 
 | { | 
 |   coeffs() = other.coeffs(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this | 
 |   */ | 
 | template<class Derived> | 
 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) | 
 | { | 
 |   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings | 
 |   this->w() = ei_cos(ha); | 
 |   this->vec() = ei_sin(ha) * aa.axis(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Set \c *this from the expression \a xpr: | 
 |   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion | 
 |   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix | 
 |   *     and \a xpr is converted to a quaternion | 
 |   */ | 
 |  | 
 | template<class Derived> | 
 | template<class MatrixDerived> | 
 | inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) | 
 | { | 
 |   EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename MatrixDerived::Scalar>::ret), | 
 |    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |   ei_quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to | 
 |   * be normalized, otherwise the result is undefined. | 
 |   */ | 
 | template<class Derived> | 
 | inline typename QuaternionBase<Derived>::Matrix3 | 
 | QuaternionBase<Derived>::toRotationMatrix(void) const | 
 | { | 
 |   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) | 
 |   // if not inlined then the cost of the return by value is huge ~ +35%, | 
 |   // however, not inlining this function is an order of magnitude slower, so | 
 |   // it has to be inlined, and so the return by value is not an issue | 
 |   Matrix3 res; | 
 |  | 
 |   const Scalar tx  = 2*this->x(); | 
 |   const Scalar ty  = 2*this->y(); | 
 |   const Scalar tz  = 2*this->z(); | 
 |   const Scalar twx = tx*this->w(); | 
 |   const Scalar twy = ty*this->w(); | 
 |   const Scalar twz = tz*this->w(); | 
 |   const Scalar txx = tx*this->x(); | 
 |   const Scalar txy = ty*this->x(); | 
 |   const Scalar txz = tz*this->x(); | 
 |   const Scalar tyy = ty*this->y(); | 
 |   const Scalar tyz = tz*this->y(); | 
 |   const Scalar tzz = tz*this->z(); | 
 |  | 
 |   res.coeffRef(0,0) = 1-(tyy+tzz); | 
 |   res.coeffRef(0,1) = txy-twz; | 
 |   res.coeffRef(0,2) = txz+twy; | 
 |   res.coeffRef(1,0) = txy+twz; | 
 |   res.coeffRef(1,1) = 1-(txx+tzz); | 
 |   res.coeffRef(1,2) = tyz-twx; | 
 |   res.coeffRef(2,0) = txz-twy; | 
 |   res.coeffRef(2,1) = tyz+twx; | 
 |   res.coeffRef(2,2) = 1-(txx+tyy); | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /** Sets \c *this to be a quaternion representing a rotation between | 
 |   * the two arbitrary vectors \a a and \a b. In other words, the built | 
 |   * rotation represent a rotation sending the line of direction \a a | 
 |   * to the line of direction \a b, both lines passing through the origin. | 
 |   * | 
 |   * \returns a reference to \c *this. | 
 |   * | 
 |   * Note that the two input vectors do \b not have to be normalized, and | 
 |   * do not need to have the same norm. | 
 |   */ | 
 | template<class Derived> | 
 | template<typename Derived1, typename Derived2> | 
 | inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) | 
 | { | 
 |   Vector3 v0 = a.normalized(); | 
 |   Vector3 v1 = b.normalized(); | 
 |   Scalar c = v1.dot(v0); | 
 |  | 
 |   // if dot == -1, vectors are nearly opposites | 
 |   // => accuraletly compute the rotation axis by computing the | 
 |   //    intersection of the two planes. This is done by solving: | 
 |   //       x^T v0 = 0 | 
 |   //       x^T v1 = 0 | 
 |   //    under the constraint: | 
 |   //       ||x|| = 1 | 
 |   //    which yields a singular value problem | 
 |   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) | 
 |   { | 
 |     c = std::max<Scalar>(c,-1); | 
 |     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); | 
 |     JacobiSVD<Matrix<Scalar,2,3> > svd(m); | 
 |     Vector3 axis = svd.matrixV().col(2); | 
 |  | 
 |     Scalar w2 = (Scalar(1)+c)*Scalar(0.5); | 
 |     this->w() = ei_sqrt(w2); | 
 |     this->vec() = axis * ei_sqrt(Scalar(1) - w2); | 
 |     return derived(); | 
 |   } | 
 |   Vector3 axis = v0.cross(v1); | 
 |   Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); | 
 |   Scalar invs = Scalar(1)/s; | 
 |   this->vec() = axis * invs; | 
 |   this->w() = s * Scalar(0.5); | 
 |  | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** \returns the multiplicative inverse of \c *this | 
 |   * Note that in most cases, i.e., if you simply want the opposite rotation, | 
 |   * and/or the quaternion is normalized, then it is enough to use the conjugate. | 
 |   * | 
 |   * \sa QuaternionBase::conjugate() | 
 |   */ | 
 | template <class Derived> | 
 | inline Quaternion<typename ei_traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const | 
 | { | 
 |   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ?? | 
 |   Scalar n2 = this->squaredNorm(); | 
 |   if (n2 > 0) | 
 |     return Quaternion<Scalar>(conjugate().coeffs() / n2); | 
 |   else | 
 |   { | 
 |     // return an invalid result to flag the error | 
 |     return Quaternion<Scalar>(Coefficients::Zero()); | 
 |   } | 
 | } | 
 |  | 
 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse | 
 |   * if the quaternion is normalized. | 
 |   * The conjugate of a quaternion represents the opposite rotation. | 
 |   * | 
 |   * \sa Quaternion2::inverse() | 
 |   */ | 
 | template <class Derived> | 
 | inline Quaternion<typename ei_traits<Derived>::Scalar> | 
 | QuaternionBase<Derived>::conjugate() const | 
 | { | 
 |   return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z()); | 
 | } | 
 |  | 
 | /** \returns the angle (in radian) between two rotations | 
 |   * \sa dot() | 
 |   */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | inline typename ei_traits<Derived>::Scalar | 
 | QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const | 
 | { | 
 |   double d = ei_abs(this->dot(other)); | 
 |   if (d>=1.0) | 
 |     return Scalar(0); | 
 |   return static_cast<Scalar>(2 * std::acos(d)); | 
 | } | 
 |  | 
 | /** \returns the spherical linear interpolation between the two quaternions | 
 |   * \c *this and \a other at the parameter \a t | 
 |   */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | Quaternion<typename ei_traits<Derived>::Scalar> | 
 | QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const | 
 | { | 
 |   static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); | 
 |   Scalar d = this->dot(other); | 
 |   Scalar absD = ei_abs(d); | 
 |  | 
 |   Scalar scale0; | 
 |   Scalar scale1; | 
 |  | 
 |   if (absD>=one) | 
 |   { | 
 |     scale0 = Scalar(1) - t; | 
 |     scale1 = t; | 
 |   } | 
 |   else | 
 |   { | 
 |     // theta is the angle between the 2 quaternions | 
 |     Scalar theta = std::acos(absD); | 
 |     Scalar sinTheta = ei_sin(theta); | 
 |  | 
 |     scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
 |     scale1 = ei_sin( ( t * theta) ) / sinTheta; | 
 |     if (d<0) | 
 |       scale1 = -scale1; | 
 |   } | 
 |  | 
 |   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); | 
 | } | 
 |  | 
 | // set from a rotation matrix | 
 | template<typename Other> | 
 | struct ei_quaternionbase_assign_impl<Other,3,3> | 
 | { | 
 |   typedef typename Other::Scalar Scalar; | 
 |   typedef DenseIndex Index; | 
 |   template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& mat) | 
 |   { | 
 |     // This algorithm comes from  "Quaternion Calculus and Fast Animation", | 
 |     // Ken Shoemake, 1987 SIGGRAPH course notes | 
 |     Scalar t = mat.trace(); | 
 |     if (t > Scalar(0)) | 
 |     { | 
 |       t = ei_sqrt(t + Scalar(1.0)); | 
 |       q.w() = Scalar(0.5)*t; | 
 |       t = Scalar(0.5)/t; | 
 |       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; | 
 |       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; | 
 |       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; | 
 |     } | 
 |     else | 
 |     { | 
 |       DenseIndex i = 0; | 
 |       if (mat.coeff(1,1) > mat.coeff(0,0)) | 
 |         i = 1; | 
 |       if (mat.coeff(2,2) > mat.coeff(i,i)) | 
 |         i = 2; | 
 |       DenseIndex j = (i+1)%3; | 
 |       DenseIndex k = (j+1)%3; | 
 |  | 
 |       t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); | 
 |       q.coeffs().coeffRef(i) = Scalar(0.5) * t; | 
 |       t = Scalar(0.5)/t; | 
 |       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; | 
 |       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; | 
 |       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | // set from a vector of coefficients assumed to be a quaternion | 
 | template<typename Other> | 
 | struct ei_quaternionbase_assign_impl<Other,4,1> | 
 | { | 
 |   typedef typename Other::Scalar Scalar; | 
 |   template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& vec) | 
 |   { | 
 |     q.coeffs() = vec; | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | #endif // EIGEN_QUATERNION_H |