| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2001 Intel Corporation | 
 | // Copyright (C) 2010 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | // The SSE code for the 4x4 float and double matrix inverse in this file | 
 | // comes from the following Intel's library: | 
 | // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ | 
 | // | 
 | // Here is the respective copyright and license statement: | 
 | // | 
 | //   Copyright (c) 2001 Intel Corporation. | 
 | // | 
 | // Permition is granted to use, copy, distribute and prepare derivative works | 
 | // of this library for any purpose and without fee, provided, that the above | 
 | // copyright notice and this statement appear in all copies. | 
 | // Intel makes no representations about the suitability of this software for | 
 | // any purpose, and specifically disclaims all warranties. | 
 | // See LEGAL.TXT for all the legal information. | 
 |  | 
 | #ifndef EIGEN_INVERSE_SSE_H | 
 | #define EIGEN_INVERSE_SSE_H | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct ei_compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType> | 
 | { | 
 |   static void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     EIGEN_ALIGN16 const  int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 }; | 
 |  | 
 |     // Load the full matrix into registers | 
 |     __m128 _L1 = matrix.template packet<Aligned>( 0); | 
 |     __m128 _L2 = matrix.template packet<Aligned>( 4); | 
 |     __m128 _L3 = matrix.template packet<Aligned>( 8); | 
 |     __m128 _L4 = matrix.template packet<Aligned>(12); | 
 |  | 
 |     // The inverse is calculated using "Divide and Conquer" technique. The | 
 |     // original matrix is divide into four 2x2 sub-matrices. Since each | 
 |     // register holds four matrix element, the smaller matrices are | 
 |     // represented as a registers. Hence we get a better locality of the | 
 |     // calculations. | 
 |  | 
 |     __m128 A = _mm_movelh_ps(_L1, _L2),    // the four sub-matrices | 
 |            B = _mm_movehl_ps(_L2, _L1), | 
 |            C = _mm_movelh_ps(_L3, _L4), | 
 |            D = _mm_movehl_ps(_L4, _L3); | 
 |  | 
 |     __m128 iA, iB, iC, iD,                 // partial inverse of the sub-matrices | 
 |             DC, AB; | 
 |     __m128 dA, dB, dC, dD;                 // determinant of the sub-matrices | 
 |     __m128 det, d, d1, d2; | 
 |     __m128 rd;                             // reciprocal of the determinant | 
 |  | 
 |     //  AB = A# * B | 
 |     AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B); | 
 |     AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E))); | 
 |     //  DC = D# * C | 
 |     DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C); | 
 |     DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E))); | 
 |  | 
 |     //  dA = |A| | 
 |     dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A); | 
 |     dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA)); | 
 |     //  dB = |B| | 
 |     dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B); | 
 |     dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB)); | 
 |  | 
 |     //  dC = |C| | 
 |     dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C); | 
 |     dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC)); | 
 |     //  dD = |D| | 
 |     dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D); | 
 |     dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD)); | 
 |  | 
 |     //  d = trace(AB*DC) = trace(A#*B*D#*C) | 
 |     d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB); | 
 |  | 
 |     //  iD = C*A#*B | 
 |     iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB)); | 
 |     iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB))); | 
 |     //  iA = B*D#*C | 
 |     iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC)); | 
 |     iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC))); | 
 |  | 
 |     //  d = trace(AB*DC) = trace(A#*B*D#*C) [continue] | 
 |     d  = _mm_add_ps(d, _mm_movehl_ps(d, d)); | 
 |     d  = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1)); | 
 |     d1 = _mm_mul_ss(dA,dD); | 
 |     d2 = _mm_mul_ss(dB,dC); | 
 |  | 
 |     //  iD = D*|A| - C*A#*B | 
 |     iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD); | 
 |  | 
 |     //  iA = A*|D| - B*D#*C; | 
 |     iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA); | 
 |  | 
 |     //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) | 
 |     det = _mm_sub_ss(_mm_add_ss(d1,d2),d); | 
 |     rd  = _mm_div_ss(_mm_set_ss(1.0f), det); | 
 |  | 
 | //     #ifdef ZERO_SINGULAR | 
 | //         rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd); | 
 | //     #endif | 
 |  | 
 |     //  iB = D * (A#B)# = D*B#*A | 
 |     iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33)); | 
 |     iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66))); | 
 |     //  iC = A * (D#C)# = A*C#*D | 
 |     iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33)); | 
 |     iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66))); | 
 |  | 
 |     rd = _mm_shuffle_ps(rd,rd,0); | 
 |     rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP)); | 
 |  | 
 |     //  iB = C*|B| - D*B#*A | 
 |     iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB); | 
 |  | 
 |     //  iC = B*|C| - A*C#*D; | 
 |     iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC); | 
 |  | 
 |     //  iX = iX / det | 
 |     iA = _mm_mul_ps(rd,iA); | 
 |     iB = _mm_mul_ps(rd,iB); | 
 |     iC = _mm_mul_ps(rd,iC); | 
 |     iD = _mm_mul_ps(rd,iD); | 
 |  | 
 |     result.template writePacket<Aligned>( 0, _mm_shuffle_ps(iA,iB,0x77)); | 
 |     result.template writePacket<Aligned>( 4, _mm_shuffle_ps(iA,iB,0x22)); | 
 |     result.template writePacket<Aligned>( 8, _mm_shuffle_ps(iC,iD,0x77)); | 
 |     result.template writePacket<Aligned>(12, _mm_shuffle_ps(iC,iD,0x22)); | 
 |   } | 
 |  | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct ei_compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType> | 
 | { | 
 |   static void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     const EIGEN_ALIGN16 long long int _Sign_NP[2] = { 0x8000000000000000ll, 0x0000000000000000ll }; | 
 |     const EIGEN_ALIGN16 long long int _Sign_PN[2] = { 0x0000000000000000ll, 0x8000000000000000ll }; | 
 |  | 
 |     // The inverse is calculated using "Divide and Conquer" technique. The | 
 |     // original matrix is divide into four 2x2 sub-matrices. Since each | 
 |     // register of the matrix holds two element, the smaller matrices are | 
 |     // consisted of two registers. Hence we get a better locality of the | 
 |     // calculations. | 
 |  | 
 |     // the four sub-matrices | 
 |     __m128d A1(matrix.template packet<Aligned>( 0)), B1(matrix.template packet<Aligned>( 2)), | 
 |             A2(matrix.template packet<Aligned>( 4)), B2(matrix.template packet<Aligned>( 6)), | 
 |             C1(matrix.template packet<Aligned>( 8)), D1(matrix.template packet<Aligned>(10)), | 
 |             C2(matrix.template packet<Aligned>(12)), D2(matrix.template packet<Aligned>(14)); | 
 |     __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2,     // partial invese of the sub-matrices | 
 |             DC1, DC2, AB1, AB2; | 
 |     __m128d dA, dB, dC, dD;     // determinant of the sub-matrices | 
 |     __m128d det, d1, d2, rd; | 
 |  | 
 |     //  dA = |A| | 
 |     dA = _mm_shuffle_pd(A2, A2, 1); | 
 |     dA = _mm_mul_pd(A1, dA); | 
 |     dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3)); | 
 |     //  dB = |B| | 
 |     dB = _mm_shuffle_pd(B2, B2, 1); | 
 |     dB = _mm_mul_pd(B1, dB); | 
 |     dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3)); | 
 |  | 
 |     //  AB = A# * B | 
 |     AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3)); | 
 |     AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0)); | 
 |     AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3))); | 
 |     AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0))); | 
 |  | 
 |     //  dC = |C| | 
 |     dC = _mm_shuffle_pd(C2, C2, 1); | 
 |     dC = _mm_mul_pd(C1, dC); | 
 |     dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3)); | 
 |     //  dD = |D| | 
 |     dD = _mm_shuffle_pd(D2, D2, 1); | 
 |     dD = _mm_mul_pd(D1, dD); | 
 |     dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3)); | 
 |  | 
 |     //  DC = D# * C | 
 |     DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3)); | 
 |     DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0)); | 
 |     DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3))); | 
 |     DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0))); | 
 |  | 
 |     //  rd = trace(AB*DC) = trace(A#*B*D#*C) | 
 |     d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0)); | 
 |     d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3)); | 
 |     rd = _mm_add_pd(d1, d2); | 
 |     rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3)); | 
 |  | 
 |     //  iD = C*A#*B | 
 |     iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0)); | 
 |     iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0)); | 
 |     iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3))); | 
 |     iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3))); | 
 |  | 
 |     //  iA = B*D#*C | 
 |     iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0)); | 
 |     iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0)); | 
 |     iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3))); | 
 |     iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3))); | 
 |  | 
 |     //  iD = D*|A| - C*A#*B | 
 |     dA = _mm_shuffle_pd(dA,dA,0); | 
 |     iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1); | 
 |     iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2); | 
 |  | 
 |     //  iA = A*|D| - B*D#*C; | 
 |     dD = _mm_shuffle_pd(dD,dD,0); | 
 |     iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1); | 
 |     iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2); | 
 |  | 
 |     d1 = _mm_mul_sd(dA, dD); | 
 |     d2 = _mm_mul_sd(dB, dC); | 
 |  | 
 |     //  iB = D * (A#B)# = D*B#*A | 
 |     iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1)); | 
 |     iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1)); | 
 |     iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2))); | 
 |     iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2))); | 
 |  | 
 |     //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) | 
 |     det = _mm_add_sd(d1, d2); | 
 |     det = _mm_sub_sd(det, rd); | 
 |  | 
 |     //  iC = A * (D#C)# = A*C#*D | 
 |     iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1)); | 
 |     iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1)); | 
 |     iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2))); | 
 |     iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2))); | 
 |  | 
 |     rd = _mm_div_sd(_mm_set_sd(1.0), det); | 
 | //     #ifdef ZERO_SINGULAR | 
 | //         rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd); | 
 | //     #endif | 
 |     rd = _mm_shuffle_pd(rd,rd,0); | 
 |  | 
 |     //  iB = C*|B| - D*B#*A | 
 |     dB = _mm_shuffle_pd(dB,dB,0); | 
 |     iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1); | 
 |     iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2); | 
 |  | 
 |     d1 = _mm_xor_pd(rd, _mm_load_pd((double*)_Sign_PN)); | 
 |     d2 = _mm_xor_pd(rd, _mm_load_pd((double*)_Sign_NP)); | 
 |  | 
 |     //  iC = B*|C| - A*C#*D; | 
 |     dC = _mm_shuffle_pd(dC,dC,0); | 
 |     iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1); | 
 |     iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2); | 
 |  | 
 |     result.template writePacket<Aligned>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1));     // iA# / det | 
 |     result.template writePacket<Aligned>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2)); | 
 |     result.template writePacket<Aligned>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1));     // iB# / det | 
 |     result.template writePacket<Aligned>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2)); | 
 |     result.template writePacket<Aligned>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1));     // iC# / det | 
 |     result.template writePacket<Aligned>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2)); | 
 |     result.template writePacket<Aligned>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1));     // iD# / det | 
 |     result.template writePacket<Aligned>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2)); | 
 |   } | 
 | }; | 
 |  | 
 | #endif // EIGEN_INVERSE_SSE_H |