| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "sparse.h" | 
 | #include <Eigen/SparseExtra> | 
 |  | 
 | #ifdef EIGEN_UMFPACK_SUPPORT | 
 | #include <Eigen/UmfPackSupport> | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_SUPERLU_SUPPORT | 
 | #include <Eigen/SuperLUSupport> | 
 | #endif | 
 |  | 
 | template<typename Scalar> void sparse_lu(int rows, int cols) | 
 | { | 
 |   double density = std::max(8./(rows*cols), 0.01); | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
 |   typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
 |  | 
 |   DenseVector vec1 = DenseVector::Random(rows); | 
 |  | 
 |   std::vector<Vector2i> zeroCoords; | 
 |   std::vector<Vector2i> nonzeroCoords; | 
 |  | 
 |     static int count = 0; | 
 |     SparseMatrix<Scalar> m2(rows, cols); | 
 |     DenseMatrix refMat2(rows, cols); | 
 |  | 
 |     DenseVector b = DenseVector::Random(cols); | 
 |     DenseVector refX(cols), x(cols); | 
 |  | 
 |     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords); | 
 |  | 
 |     FullPivLU<DenseMatrix> refLu(refMat2); | 
 |     refX = refLu.solve(b); | 
 |     #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT) | 
 |     Scalar refDet = refLu.determinant(); | 
 |     #endif | 
 |     x.setZero(); | 
 |     // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x); | 
 |     // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default"); | 
 |     #ifdef EIGEN_SUPERLU_SUPPORT | 
 |     { | 
 |       x.setZero(); | 
 |       SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2); | 
 |       if (slu.succeeded()) | 
 |       { | 
 |         if (slu.solve(b,&x)) { | 
 |           VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); | 
 |         } | 
 |         // std::cerr << refDet << " == " << slu.determinant() << "\n"; | 
 |         if (slu.solve(b, &x, SvTranspose)) { | 
 |           VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>())); | 
 |         } | 
 |  | 
 |         if (slu.solve(b, &x, SvAdjoint)) { | 
 |          VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>())); | 
 |         } | 
 |  | 
 |         if (count==0) { | 
 |           VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex | 
 |         } | 
 |       } | 
 |     } | 
 |     #endif | 
 |     #ifdef EIGEN_UMFPACK_SUPPORT | 
 |     { | 
 |       // check solve | 
 |       x.setZero(); | 
 |       SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2); | 
 |       if (slu.succeeded()) { | 
 |         if (slu.solve(b,&x)) { | 
 |           if (count==0) { | 
 |             VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack");  // FIXME solve is not very stable for complex | 
 |           } | 
 |         } | 
 |         VERIFY_IS_APPROX(refDet,slu.determinant()); | 
 |         // TODO check the extracted data | 
 |         //std::cerr << slu.matrixL() << "\n"; | 
 |       } | 
 |     } | 
 |     #endif | 
 |     count++; | 
 | } | 
 |  | 
 | void test_sparse_lu() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(sparse_lu<double>(8, 8) ); | 
 |     int s = ei_random<int>(1,300); | 
 |     CALL_SUBTEST_2(sparse_lu<std::complex<double> >(s,s) ); | 
 |     CALL_SUBTEST_1(sparse_lu<double>(s,s) ); | 
 |   } | 
 | } |