blob: 878352b708ec74103c35c1eab81f9f50073e5601 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN2_SUPPORT
#include "main.h"
template <typename MatrixType>
void eigen2support(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m3(rows, cols);
Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>();
// scalar addition
VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows, cols, s1) + m1);
VERIFY_IS_APPROX((m1 * Scalar(2)).cwise() - s2, (m1 + m1) - MatrixType::Constant(rows, cols, s2));
m3 = m1;
m3.cwise() += s2;
VERIFY_IS_APPROX(m3, m1.cwise() + s2);
m3 = m1;
m3.cwise() -= s1;
VERIFY_IS_APPROX(m3, m1.cwise() - s1);
VERIFY_IS_EQUAL((m1.corner(TopLeft, 1, 1)), (m1.block(0, 0, 1, 1)));
VERIFY_IS_EQUAL((m1.template corner<1, 1>(TopLeft)), (m1.template block<1, 1>(0, 0)));
VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0, 1)));
VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0, 1)));
VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows - 1, 1)));
VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows - 1, 1)));
using numext::abs2;
using numext::real;
using std::cos;
VERIFY_IS_EQUAL(ei_cos(s1), cos(s1));
VERIFY_IS_EQUAL(ei_real(s1), real(s1));
VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1));
m1.minor(0, 0);
}
EIGEN_DECLARE_TEST(eigen2support) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(eigen2support(Matrix<double, 1, 1>()));
CALL_SUBTEST_2(eigen2support(MatrixXd(1, 1)));
CALL_SUBTEST_4(eigen2support(Matrix3f()));
CALL_SUBTEST_5(eigen2support(Matrix4d()));
CALL_SUBTEST_2(eigen2support(MatrixXf(200, 200)));
CALL_SUBTEST_6(eigen2support(MatrixXcd(100, 100)));
}
}