| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN2_SUPPORT |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| void eigen2support(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m3(rows, cols); |
| |
| Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); |
| |
| // scalar addition |
| VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); |
| VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows, cols, s1) + m1); |
| VERIFY_IS_APPROX((m1 * Scalar(2)).cwise() - s2, (m1 + m1) - MatrixType::Constant(rows, cols, s2)); |
| m3 = m1; |
| m3.cwise() += s2; |
| VERIFY_IS_APPROX(m3, m1.cwise() + s2); |
| m3 = m1; |
| m3.cwise() -= s1; |
| VERIFY_IS_APPROX(m3, m1.cwise() - s1); |
| |
| VERIFY_IS_EQUAL((m1.corner(TopLeft, 1, 1)), (m1.block(0, 0, 1, 1))); |
| VERIFY_IS_EQUAL((m1.template corner<1, 1>(TopLeft)), (m1.template block<1, 1>(0, 0))); |
| VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0, 1))); |
| VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0, 1))); |
| VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows - 1, 1))); |
| VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows - 1, 1))); |
| |
| using numext::abs2; |
| using numext::real; |
| using std::cos; |
| VERIFY_IS_EQUAL(ei_cos(s1), cos(s1)); |
| VERIFY_IS_EQUAL(ei_real(s1), real(s1)); |
| VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1)); |
| |
| m1.minor(0, 0); |
| } |
| |
| EIGEN_DECLARE_TEST(eigen2support) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(eigen2support(Matrix<double, 1, 1>())); |
| CALL_SUBTEST_2(eigen2support(MatrixXd(1, 1))); |
| CALL_SUBTEST_4(eigen2support(Matrix3f())); |
| CALL_SUBTEST_5(eigen2support(Matrix4d())); |
| CALL_SUBTEST_2(eigen2support(MatrixXf(200, 200))); |
| CALL_SUBTEST_6(eigen2support(MatrixXcd(100, 100))); |
| } |
| } |