| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TESTSPARSE_H |
| #define EIGEN_TESTSPARSE_H |
| |
| #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET |
| |
| #include "main.h" |
| |
| #ifdef min |
| #undef min |
| #endif |
| |
| #ifdef max |
| #undef max |
| #endif |
| |
| #include <unordered_map> |
| #define EIGEN_UNORDERED_MAP_SUPPORT |
| |
| #include <Eigen/Cholesky> |
| #include <Eigen/LU> |
| #include <Eigen/Sparse> |
| |
| enum { ForceNonZeroDiag = 1, MakeLowerTriangular = 2, MakeUpperTriangular = 4, ForceRealDiag = 8 }; |
| |
| /* Initializes both a sparse and dense matrix with same random values, |
| * and a ratio of \a density non zero entries. |
| * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular |
| * allowing to control the shape of the matrix. |
| * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, |
| * and zero coefficients respectively. |
| */ |
| template <typename Scalar, int Opt1, int Opt2, typename StorageIndex> |
| void initSparse(double density, Matrix<Scalar, Dynamic, Dynamic, Opt1>& refMat, |
| SparseMatrix<Scalar, Opt2, StorageIndex>& sparseMat, int flags = 0, |
| std::vector<Matrix<StorageIndex, 2, 1> >* zeroCoords = 0, |
| std::vector<Matrix<StorageIndex, 2, 1> >* nonzeroCoords = 0) { |
| enum { IsRowMajor = SparseMatrix<Scalar, Opt2, StorageIndex>::IsRowMajor }; |
| sparseMat.setZero(); |
| // sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); |
| int nnz = static_cast<int>((1.5 * density) * static_cast<double>(IsRowMajor ? refMat.cols() : refMat.rows())); |
| sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), nnz)); |
| |
| Index insert_count = 0; |
| for (Index j = 0; j < sparseMat.outerSize(); j++) { |
| // sparseMat.startVec(j); |
| for (Index i = 0; i < sparseMat.innerSize(); i++) { |
| Index ai(i), aj(j); |
| if (IsRowMajor) std::swap(ai, aj); |
| Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); |
| if ((flags & ForceNonZeroDiag) && (i == j)) { |
| // FIXME: the following is too conservative |
| v = internal::random<Scalar>() * Scalar(3.); |
| v = v * v; |
| if (numext::real(v) > 0) |
| v += Scalar(5); |
| else |
| v -= Scalar(5); |
| } |
| if ((flags & MakeLowerTriangular) && aj > ai) |
| v = Scalar(0); |
| else if ((flags & MakeUpperTriangular) && aj < ai) |
| v = Scalar(0); |
| |
| if ((flags & ForceRealDiag) && (i == j)) v = numext::real(v); |
| |
| if (!numext::is_exactly_zero(v)) { |
| // sparseMat.insertBackByOuterInner(j,i) = v; |
| sparseMat.insertByOuterInner(j, i) = v; |
| ++insert_count; |
| if (nonzeroCoords) nonzeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj)); |
| } else if (zeroCoords) { |
| zeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj)); |
| } |
| refMat(ai, aj) = v; |
| |
| // make sure we only insert as many as the sparse matrix supports |
| if (insert_count == NumTraits<StorageIndex>::highest()) return; |
| } |
| } |
| // sparseMat.finalize(); |
| } |
| |
| template <typename Scalar, int Options, typename Index> |
| void initSparse(double density, Matrix<Scalar, Dynamic, 1>& refVec, SparseVector<Scalar, Options, Index>& sparseVec, |
| std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) { |
| sparseVec.reserve(int(refVec.size() * density)); |
| sparseVec.setZero(); |
| for (int i = 0; i < refVec.size(); i++) { |
| Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); |
| if (!numext::is_exactly_zero(v)) { |
| sparseVec.insertBack(i) = v; |
| if (nonzeroCoords) nonzeroCoords->push_back(i); |
| } else if (zeroCoords) |
| zeroCoords->push_back(i); |
| refVec[i] = v; |
| } |
| } |
| |
| template <typename Scalar, int Options, typename Index> |
| void initSparse(double density, Matrix<Scalar, 1, Dynamic>& refVec, SparseVector<Scalar, Options, Index>& sparseVec, |
| std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) { |
| sparseVec.reserve(int(refVec.size() * density)); |
| sparseVec.setZero(); |
| for (int i = 0; i < refVec.size(); i++) { |
| Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); |
| if (v != Scalar(0)) { |
| sparseVec.insertBack(i) = v; |
| if (nonzeroCoords) nonzeroCoords->push_back(i); |
| } else if (zeroCoords) |
| zeroCoords->push_back(i); |
| refVec[i] = v; |
| } |
| } |
| |
| #endif // EIGEN_TESTSPARSE_H |