blob: 1083f3f1a3ef06ca01a31bf741a25f9871c16a41 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(_MSC_VER) && (_MSC_VER == 1800)
// This unit test takes forever to compile in Release mode with MSVC 2013,
// multiple hours. So let's switch off optimization for this one.
#pragma optimize("", off)
#endif
static long int nb_temporaries;
inline void on_temporary_creation() {
// here's a great place to set a breakpoint when debugging failures in this test!
nb_temporaries++;
}
#define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \
{ on_temporary_creation(); }
#include "sparse.h"
#define VERIFY_EVALUATION_COUNT(XPR, N) \
{ \
nb_temporaries = 0; \
CALL_SUBTEST(XPR); \
if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
VERIFY((#XPR) && nb_temporaries == N); \
}
template <typename SparseMatrixType>
void sparse_product() {
typedef typename SparseMatrixType::StorageIndex StorageIndex;
Index n = 100;
const Index rows = internal::random<Index>(1, n);
const Index cols = internal::random<Index>(1, n);
const Index depth = internal::random<Index>(1, n);
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = (std::max)(8. / (rows * cols), 0.2);
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
typedef Matrix<Scalar, 1, Dynamic> RowDenseVector;
typedef SparseVector<Scalar, 0, StorageIndex> ColSpVector;
typedef SparseVector<Scalar, RowMajor, StorageIndex> RowSpVector;
Scalar s1 = internal::random<Scalar>();
Scalar s2 = internal::random<Scalar>();
// test matrix-matrix product
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth);
DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols);
DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols);
DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
DenseMatrix refMat5 = DenseMatrix::Random(depth, cols);
DenseMatrix refMat6 = DenseMatrix::Random(rows, rows);
DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
// DenseVector dv1 = DenseVector::Random(rows);
SparseMatrixType m2(rows, depth);
SparseMatrixType m2t(depth, rows);
SparseMatrixType m3(depth, cols);
SparseMatrixType m3t(cols, depth);
SparseMatrixType m4(rows, cols);
SparseMatrixType m4t(cols, rows);
SparseMatrixType m6(rows, rows);
initSparse(density, refMat2, m2);
initSparse(density, refMat2t, m2t);
initSparse(density, refMat3, m3);
initSparse(density, refMat3t, m3t);
initSparse(density, refMat4, m4);
initSparse(density, refMat4t, m4t);
initSparse(density, refMat6, m6);
// int c = internal::random<int>(0,depth-1);
// sparse * sparse
VERIFY_IS_APPROX(m4 = m2 * m3, refMat4 = refMat2 * refMat3);
VERIFY_IS_APPROX(m4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(m4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose());
VERIFY_IS_APPROX(m4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
VERIFY_IS_APPROX(m4 = m2 * m3 / s1, refMat4 = refMat2 * refMat3 / s1);
VERIFY_IS_APPROX(m4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1);
VERIFY_IS_APPROX(m4 = s2 * m2 * m3 * s1, refMat4 = s2 * refMat2 * refMat3 * s1);
VERIFY_IS_APPROX(m4 = (m2 + m2) * m3, refMat4 = (refMat2 + refMat2) * refMat3);
VERIFY_IS_APPROX(m4 = m2 * m3.leftCols(cols / 2), refMat4 = refMat2 * refMat3.leftCols(cols / 2));
VERIFY_IS_APPROX(m4 = m2 * (m3 + m3).leftCols(cols / 2),
refMat4 = refMat2 * (refMat3 + refMat3).leftCols(cols / 2));
VERIFY_IS_APPROX(m4 = (m2 * m3).pruned(0), refMat4 = refMat2 * refMat3);
VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3).pruned(0), refMat4 = refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3t.transpose()).pruned(0),
refMat4 = refMat2t.transpose() * refMat3t.transpose());
VERIFY_IS_APPROX(m4 = (m2 * m3t.transpose()).pruned(0), refMat4 = refMat2 * refMat3t.transpose());
#ifndef EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT
// make sure the right product implementation is called:
if ((!SparseMatrixType::IsRowMajor) && m2.rows() <= m3.cols()) {
VERIFY_EVALUATION_COUNT(m4 = m2 * m3, 2); // 2 for transposing and get a sorted result.
VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).pruned(0), 1);
VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).eval().pruned(0), 4);
}
#endif
// and that pruning is effective:
{
DenseMatrix Ad(2, 2);
Ad << -1, 1, 1, 1;
SparseMatrixType As(Ad.sparseView()), B(2, 2);
VERIFY_IS_EQUAL((As * As.transpose()).eval().nonZeros(), 4);
VERIFY_IS_EQUAL((Ad * Ad.transpose()).eval().sparseView().eval().nonZeros(), 2);
VERIFY_IS_EQUAL((As * As.transpose()).pruned(1e-6).eval().nonZeros(), 2);
}
// dense ?= sparse * sparse
VERIFY_IS_APPROX(dm4 = m2 * m3, refMat4 = refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 += m2 * m3, refMat4 += refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 -= m2 * m3, refMat4 -= refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3, refMat4 += refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3, refMat4 -= refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3t.transpose(), refMat4 += refMat2t.transpose() * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3t.transpose(), refMat4 -= refMat2t.transpose() * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 += m2 * m3t.transpose(), refMat4 += refMat2 * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 -= m2 * m3t.transpose(), refMat4 -= refMat2 * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1);
// test aliasing
m4 = m2;
refMat4 = refMat2;
VERIFY_IS_APPROX(m4 = m4 * m3, refMat4 = refMat4 * refMat3);
// sparse * dense matrix
VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 = m2 * refMat3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3, refMat4 = refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3t.transpose(),
refMat4 = refMat2t.transpose() * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 = dm4 + m2 * refMat3, refMat4 = refMat4 + refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 += m2 * refMat3, refMat4 += refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 -= m2 * refMat3, refMat4 -= refMat2 * refMat3);
VERIFY_IS_APPROX(dm4.noalias() += m2 * refMat3, refMat4 += refMat2 * refMat3);
VERIFY_IS_APPROX(dm4.noalias() -= m2 * refMat3, refMat4 -= refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 = m2 * (refMat3 + refMat3), refMat4 = refMat2 * (refMat3 + refMat3));
VERIFY_IS_APPROX(dm4 = m2t.transpose() * (refMat3 + refMat5) * 0.5,
refMat4 = refMat2t.transpose() * (refMat3 + refMat5) * 0.5);
// sparse * dense vector
VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3.col(0), refMat4.col(0) = refMat2 * refMat3.col(0));
VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3t.transpose().col(0),
refMat4.col(0) = refMat2 * refMat3t.transpose().col(0));
VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3.col(0),
refMat4.col(0) = refMat2t.transpose() * refMat3.col(0));
VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3t.transpose().col(0),
refMat4.col(0) = refMat2t.transpose() * refMat3t.transpose().col(0));
// dense * sparse
VERIFY_IS_APPROX(dm4 = refMat2 * m3, refMat4 = refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 = dm4 + refMat2 * m3, refMat4 = refMat4 + refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 += refMat2 * m3, refMat4 += refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 -= refMat2 * m3, refMat4 -= refMat2 * refMat3);
VERIFY_IS_APPROX(dm4.noalias() += refMat2 * m3, refMat4 += refMat2 * refMat3);
VERIFY_IS_APPROX(dm4.noalias() -= refMat2 * m3, refMat4 -= refMat2 * refMat3);
VERIFY_IS_APPROX(dm4 = refMat2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose());
VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3);
VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3t.transpose(),
refMat4 = refMat2t.transpose() * refMat3t.transpose());
// sparse * dense and dense * sparse outer product
{
Index c = internal::random<Index>(0, depth - 1);
Index r = internal::random<Index>(0, rows - 1);
Index c1 = internal::random<Index>(0, cols - 1);
Index r1 = internal::random<Index>(0, depth - 1);
DenseMatrix dm5 = DenseMatrix::Random(depth, cols);
VERIFY_IS_APPROX(m4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(m4 = m2.middleCols(c, 1) * dm5.col(c1).transpose(),
refMat4 = refMat2.col(c) * dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(dm4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose());
VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleCols(c, 1).transpose(),
refMat4 = dm5.col(c1) * refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose());
VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.col(c).transpose(),
refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.col(c).transpose(),
refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose());
VERIFY_IS_APPROX(m4 = m2.row(r).transpose() * dm5.col(c1).transpose(),
refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(m4 = m2.middleRows(r, 1).transpose() * dm5.col(c1).transpose(),
refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(dm4 = m2.row(r).transpose() * dm5.col(c1).transpose(),
refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose());
VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r));
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleRows(r, 1), refMat4 = dm5.col(c1) * refMat2.row(r));
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r));
VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r));
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count());
VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r));
}
VERIFY_IS_APPROX(m6 = m6 * m6, refMat6 = refMat6 * refMat6);
// sparse matrix * sparse vector
ColSpVector cv0(cols), cv1;
DenseVector dcv0(cols), dcv1;
initSparse(2 * density, dcv0, cv0);
RowSpVector rv0(depth), rv1;
RowDenseVector drv0(depth), drv1(rv1);
initSparse(2 * density, drv0, rv0);
VERIFY_IS_APPROX(cv1 = m3 * cv0, dcv1 = refMat3 * dcv0);
VERIFY_IS_APPROX(rv1 = rv0 * m3, drv1 = drv0 * refMat3);
VERIFY_IS_APPROX(cv1 = m3t.adjoint() * cv0, dcv1 = refMat3t.adjoint() * dcv0);
VERIFY_IS_APPROX(cv1 = rv0 * m3, dcv1 = drv0 * refMat3);
VERIFY_IS_APPROX(rv1 = m3 * cv0, drv1 = refMat3 * dcv0);
}
// test matrix - diagonal product
{
DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
DiagonalMatrix<Scalar, Dynamic> d1(DenseVector::Random(cols));
DiagonalMatrix<Scalar, Dynamic> d2(DenseVector::Random(rows));
SparseMatrixType m2(rows, cols);
SparseMatrixType m3(rows, cols);
initSparse<Scalar>(density, refM2, m2);
initSparse<Scalar>(density, refM3, m3);
VERIFY_IS_APPROX(m3 = m2 * d1, refM3 = refM2 * d1);
VERIFY_IS_APPROX(m3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2);
VERIFY_IS_APPROX(m3 = d2 * m2, refM3 = d2 * refM2);
VERIFY_IS_APPROX(m3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose());
// also check with a SparseWrapper:
DenseVector v1 = DenseVector::Random(cols);
DenseVector v2 = DenseVector::Random(rows);
DenseVector v3 = DenseVector::Random(rows);
VERIFY_IS_APPROX(m3 = m2 * v1.asDiagonal(), refM3 = refM2 * v1.asDiagonal());
VERIFY_IS_APPROX(m3 = m2.transpose() * v2.asDiagonal(), refM3 = refM2.transpose() * v2.asDiagonal());
VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2, refM3 = v2.asDiagonal() * refM2);
VERIFY_IS_APPROX(m3 = v1.asDiagonal() * m2.transpose(), refM3 = v1.asDiagonal() * refM2.transpose());
VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2 * v1.asDiagonal(), refM3 = v2.asDiagonal() * refM2 * v1.asDiagonal());
VERIFY_IS_APPROX(v2 = m2 * v1.asDiagonal() * v1, refM2 * v1.asDiagonal() * v1);
VERIFY_IS_APPROX(v3 = v2.asDiagonal() * m2 * v1, v2.asDiagonal() * refM2 * v1);
// evaluate to a dense matrix to check the .row() and .col() iterator functions
VERIFY_IS_APPROX(d3 = m2 * d1, refM3 = refM2 * d1);
VERIFY_IS_APPROX(d3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2);
VERIFY_IS_APPROX(d3 = d2 * m2, refM3 = d2 * refM2);
VERIFY_IS_APPROX(d3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose());
}
// test self-adjoint and triangular-view products
{
DenseMatrix b = DenseMatrix::Random(rows, rows);
DenseMatrix x = DenseMatrix::Random(rows, rows);
DenseMatrix refX = DenseMatrix::Random(rows, rows);
DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
DenseMatrix refS = DenseMatrix::Zero(rows, rows);
DenseMatrix refA = DenseMatrix::Zero(rows, rows);
SparseMatrixType mUp(rows, rows);
SparseMatrixType mLo(rows, rows);
SparseMatrixType mS(rows, rows);
SparseMatrixType mA(rows, rows);
initSparse<Scalar>(density, refA, mA);
do {
initSparse<Scalar>(density, refUp, mUp, ForceRealDiag | /*ForceNonZeroDiag|*/ MakeUpperTriangular);
} while (refUp.isZero());
refLo = refUp.adjoint();
mLo = mUp.adjoint();
refS = refUp + refLo;
refS.diagonal() *= 0.5;
mS = mUp + mLo;
// TODO be able to address the diagonal....
for (int k = 0; k < mS.outerSize(); ++k)
for (typename SparseMatrixType::InnerIterator it(mS, k); it; ++it)
if (it.index() == k) it.valueRef() *= Scalar(0.5);
VERIFY_IS_APPROX(refS.adjoint(), refS);
VERIFY_IS_APPROX(mS.adjoint(), mS);
VERIFY_IS_APPROX(mS, refS);
VERIFY_IS_APPROX(x = mS * b, refX = refS * b);
// sparse selfadjointView with dense matrices
VERIFY_IS_APPROX(x = mUp.template selfadjointView<Upper>() * b, refX = refS * b);
VERIFY_IS_APPROX(x = mLo.template selfadjointView<Lower>() * b, refX = refS * b);
VERIFY_IS_APPROX(x = mS.template selfadjointView<Upper | Lower>() * b, refX = refS * b);
VERIFY_IS_APPROX(x = b * mUp.template selfadjointView<Upper>(), refX = b * refS);
VERIFY_IS_APPROX(x = b * mLo.template selfadjointView<Lower>(), refX = b * refS);
VERIFY_IS_APPROX(x = b * mS.template selfadjointView<Upper | Lower>(), refX = b * refS);
VERIFY_IS_APPROX(x.noalias() += mUp.template selfadjointView<Upper>() * b, refX += refS * b);
VERIFY_IS_APPROX(x.noalias() -= mLo.template selfadjointView<Lower>() * b, refX -= refS * b);
VERIFY_IS_APPROX(x.noalias() += mS.template selfadjointView<Upper | Lower>() * b, refX += refS * b);
// sparse selfadjointView with sparse matrices
SparseMatrixType mSres(rows, rows);
VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>() * mS,
refX = refLo.template selfadjointView<Lower>() * refS);
VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
refX = refS * refLo.template selfadjointView<Lower>());
// sparse triangularView with dense matrices
VERIFY_IS_APPROX(x = mA.template triangularView<Upper>() * b, refX = refA.template triangularView<Upper>() * b);
VERIFY_IS_APPROX(x = mA.template triangularView<Lower>() * b, refX = refA.template triangularView<Lower>() * b);
VERIFY_IS_APPROX(x = b * mA.template triangularView<Upper>(), refX = b * refA.template triangularView<Upper>());
VERIFY_IS_APPROX(x = b * mA.template triangularView<Lower>(), refX = b * refA.template triangularView<Lower>());
// sparse triangularView with sparse matrices
VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>() * mS,
refX = refA.template triangularView<Lower>() * refS);
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(),
refX = refS * refA.template triangularView<Lower>());
VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>() * mS,
refX = refA.template triangularView<Upper>() * refS);
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(),
refX = refS * refA.template triangularView<Upper>());
}
}
// New test for Bug in SparseTimeDenseProduct
template <typename SparseMatrixType, typename DenseMatrixType>
void sparse_product_regression_test() {
// This code does not compile with afflicted versions of the bug
SparseMatrixType sm1(3, 2);
DenseMatrixType m2(2, 2);
sm1.setZero();
m2.setZero();
DenseMatrixType m3 = sm1 * m2;
// This code produces a segfault with afflicted versions of another SparseTimeDenseProduct
// bug
SparseMatrixType sm2(20000, 2);
sm2.setZero();
DenseMatrixType m4(sm2 * m2);
VERIFY_IS_APPROX(m4(0, 0), 0.0);
}
template <typename Scalar>
void bug_942() {
typedef Matrix<Scalar, Dynamic, 1> Vector;
typedef SparseMatrix<Scalar, ColMajor> ColSpMat;
typedef SparseMatrix<Scalar, RowMajor> RowSpMat;
ColSpMat cmA(1, 1);
cmA.insert(0, 0) = 1;
RowSpMat rmA(1, 1);
rmA.insert(0, 0) = 1;
Vector d(1);
d[0] = 2;
double res = 2;
VERIFY_IS_APPROX((cmA * d.asDiagonal()).eval().coeff(0, 0), res);
VERIFY_IS_APPROX((d.asDiagonal() * rmA).eval().coeff(0, 0), res);
VERIFY_IS_APPROX((rmA * d.asDiagonal()).eval().coeff(0, 0), res);
VERIFY_IS_APPROX((d.asDiagonal() * cmA).eval().coeff(0, 0), res);
}
template <typename Real>
void test_mixing_types() {
typedef std::complex<Real> Cplx;
typedef SparseMatrix<Real> SpMatReal;
typedef SparseMatrix<Cplx> SpMatCplx;
typedef SparseMatrix<Cplx, RowMajor> SpRowMatCplx;
typedef Matrix<Real, Dynamic, Dynamic> DenseMatReal;
typedef Matrix<Cplx, Dynamic, Dynamic> DenseMatCplx;
Index n = internal::random<Index>(1, 100);
double density = (std::max)(8. / static_cast<double>(n * n), 0.2);
SpMatReal sR1(n, n);
SpMatCplx sC1(n, n), sC2(n, n), sC3(n, n);
SpRowMatCplx sCR(n, n);
DenseMatReal dR1(n, n);
DenseMatCplx dC1(n, n), dC2(n, n), dC3(n, n);
initSparse<Real>(density, dR1, sR1);
initSparse<Cplx>(density, dC1, sC1);
initSparse<Cplx>(density, dC2, sC2);
VERIFY_IS_APPROX(sC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1);
VERIFY_IS_APPROX(sC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()),
dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()),
dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sCR = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1);
VERIFY_IS_APPROX(sCR = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()),
dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()),
dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sC2 = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1);
VERIFY_IS_APPROX(sC2 = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()).pruned(),
dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()).pruned(),
dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sCR = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1);
VERIFY_IS_APPROX(sCR = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()).pruned(),
dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()).pruned(),
dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(dC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1);
VERIFY_IS_APPROX(dC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1);
VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(dC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose());
VERIFY_IS_APPROX(dC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1.transpose()),
dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose());
VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1.transpose()),
dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose());
VERIFY_IS_APPROX(dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1);
VERIFY_IS_APPROX(dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1);
VERIFY_IS_APPROX(dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>());
VERIFY_IS_APPROX(dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>());
VERIFY_IS_APPROX(dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1);
VERIFY_IS_APPROX(dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0));
VERIFY_IS_APPROX(dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>());
VERIFY_IS_APPROX(dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0));
}
// Test mixed storage types
template <int OrderA, int OrderB, int OrderC>
void test_mixed_storage_imp() {
typedef float Real;
typedef Matrix<Real, Dynamic, Dynamic> DenseMat;
// Case: Large inputs but small result
{
SparseMatrix<Real, OrderA> A(8, 512);
SparseMatrix<Real, OrderB> B(512, 8);
DenseMat refA(8, 512);
DenseMat refB(512, 8);
initSparse<Real>(0.1, refA, A);
initSparse<Real>(0.1, refB, B);
SparseMatrix<Real, OrderC, std::int8_t> result;
SparseMatrix<Real, OrderC> result_large;
DenseMat refResult;
VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB);
}
// Case: Small input but large result
{
SparseMatrix<Real, OrderA, std::int8_t> A(127, 8);
SparseMatrix<Real, OrderB, std::int8_t> B(8, 127);
DenseMat refA(127, 8);
DenseMat refB(8, 127);
initSparse<Real>(0.01, refA, A);
initSparse<Real>(0.01, refB, B);
SparseMatrix<Real, OrderC> result;
SparseMatrix<Real, OrderC> result_large;
DenseMat refResult;
VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB);
}
}
void test_mixed_storage() {
test_mixed_storage_imp<RowMajor, RowMajor, RowMajor>();
test_mixed_storage_imp<RowMajor, RowMajor, ColMajor>();
test_mixed_storage_imp<RowMajor, ColMajor, RowMajor>();
test_mixed_storage_imp<RowMajor, ColMajor, ColMajor>();
test_mixed_storage_imp<ColMajor, RowMajor, RowMajor>();
test_mixed_storage_imp<ColMajor, RowMajor, ColMajor>();
test_mixed_storage_imp<ColMajor, ColMajor, RowMajor>();
test_mixed_storage_imp<ColMajor, ColMajor, ColMajor>();
}
EIGEN_DECLARE_TEST(sparse_product) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1((sparse_product<SparseMatrix<double, ColMajor> >()));
CALL_SUBTEST_1((sparse_product<SparseMatrix<double, RowMajor> >()));
CALL_SUBTEST_1((bug_942<double>()));
CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, ColMajor> >()));
CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, RowMajor> >()));
CALL_SUBTEST_3((sparse_product<SparseMatrix<float, ColMajor, long int> >()));
CALL_SUBTEST_4((
sparse_product_regression_test<SparseMatrix<double, RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()));
CALL_SUBTEST_5((test_mixing_types<float>()));
CALL_SUBTEST_5((test_mixed_storage()));
}
}