| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2021 Andrew Johnson <andrew.johnson@arjohnsonau.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <int OuterStride, int InnerStride, typename VectorType> |
| void unaryview_stride(const VectorType& m) { |
| typedef typename VectorType::Scalar Scalar; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| VectorType vec = VectorType::Random(rows, cols); |
| |
| struct view_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const Scalar& v) const { return v; } |
| }; |
| |
| CwiseUnaryView<view_op, VectorType, Stride<OuterStride, InnerStride>> vec_view(vec); |
| VERIFY(vec_view.outerStride() == (OuterStride == 0 ? 0 : OuterStride)); |
| VERIFY(vec_view.innerStride() == (InnerStride == 0 ? 1 : InnerStride)); |
| } |
| |
| void test_mutable_unaryview() { |
| struct Vec3 { |
| double x; |
| double y; |
| double z; |
| }; |
| |
| Eigen::Vector<Vec3, 3> m; |
| auto x_view = m.unaryViewExpr([](Vec3& v) -> double& { return v.x; }); |
| auto y_view = m.unaryViewExpr([](Vec3& v) -> double& { return v.y; }); |
| auto z_view = m.unaryViewExpr([](Vec3& v) -> double& { return v.z; }); |
| |
| x_view.setConstant(1); |
| y_view.setConstant(2); |
| z_view.setConstant(3); |
| |
| for (int i = 0; i < m.size(); ++i) { |
| VERIFY_IS_EQUAL(m(i).x, 1); |
| VERIFY_IS_EQUAL(m(i).y, 2); |
| VERIFY_IS_EQUAL(m(i).z, 3); |
| } |
| } |
| |
| void test_unaryview_solve() { |
| // Random upper-triangular system. |
| Eigen::MatrixXd A = Eigen::MatrixXd::Random(5, 5); |
| A.triangularView<Eigen::Lower>().setZero(); |
| A.diagonal().setRandom(); |
| Eigen::VectorXd b = Eigen::VectorXd::Random(5); |
| |
| struct trivial_view_op { |
| double& operator()(double& x) const { return x; } |
| const double& operator()(const double& x) const { return x; } |
| }; |
| |
| // Non-const view: |
| { |
| auto b_view = b.unaryViewExpr(trivial_view_op()); |
| b_view(0) = 1; // Allows modification. |
| Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view); |
| VERIFY_IS_APPROX(A * x, b); |
| } |
| |
| // Const view: |
| { |
| const auto b_view = b.unaryViewExpr(trivial_view_op()); |
| Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view); |
| VERIFY_IS_APPROX(A * x, b); |
| } |
| |
| // Non-const view of const matrix: |
| { |
| const Eigen::VectorXd const_b = b; |
| auto b_view = const_b.unaryViewExpr(trivial_view_op()); |
| Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view); |
| VERIFY_IS_APPROX(A * x, b); |
| } |
| |
| // Const view of const matrix: |
| { |
| const Eigen::VectorXd const_b = b; |
| const auto b_view = const_b.unaryViewExpr(trivial_view_op()); |
| Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view); |
| VERIFY_IS_APPROX(A * x, b); |
| } |
| |
| // Eigen::MatrixXd out = |
| // mat_in.real() |
| // .triangularView<Eigen::Upper>() |
| // .solve(mat_in.unaryViewExpr([&](const auto& x){ return std::real(x); })); |
| } |
| |
| EIGEN_DECLARE_TEST(unaryviewstride) { |
| CALL_SUBTEST_1((unaryview_stride<1, 2>(MatrixXf()))); |
| CALL_SUBTEST_1((unaryview_stride<0, 0>(MatrixXf()))); |
| CALL_SUBTEST_2((unaryview_stride<1, 2>(VectorXf()))); |
| CALL_SUBTEST_2((unaryview_stride<0, 0>(VectorXf()))); |
| CALL_SUBTEST_3((unaryview_stride<1, 2>(RowVectorXf()))); |
| CALL_SUBTEST_3((unaryview_stride<0, 0>(RowVectorXf()))); |
| CALL_SUBTEST_4(test_mutable_unaryview()); |
| CALL_SUBTEST_4(test_unaryview_solve()); |
| } |