blob: 58e95d69dc51457f8b0ea8af69a6e6977828804f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2021 Andrew Johnson <andrew.johnson@arjohnsonau.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <int OuterStride, int InnerStride, typename VectorType>
void unaryview_stride(const VectorType& m) {
typedef typename VectorType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
VectorType vec = VectorType::Random(rows, cols);
struct view_op {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const Scalar& v) const { return v; }
};
CwiseUnaryView<view_op, VectorType, Stride<OuterStride, InnerStride>> vec_view(vec);
VERIFY(vec_view.outerStride() == (OuterStride == 0 ? 0 : OuterStride));
VERIFY(vec_view.innerStride() == (InnerStride == 0 ? 1 : InnerStride));
}
void test_mutable_unaryview() {
struct Vec3 {
double x;
double y;
double z;
};
Eigen::Vector<Vec3, 3> m;
auto x_view = m.unaryViewExpr([](Vec3& v) -> double& { return v.x; });
auto y_view = m.unaryViewExpr([](Vec3& v) -> double& { return v.y; });
auto z_view = m.unaryViewExpr([](Vec3& v) -> double& { return v.z; });
x_view.setConstant(1);
y_view.setConstant(2);
z_view.setConstant(3);
for (int i = 0; i < m.size(); ++i) {
VERIFY_IS_EQUAL(m(i).x, 1);
VERIFY_IS_EQUAL(m(i).y, 2);
VERIFY_IS_EQUAL(m(i).z, 3);
}
}
void test_unaryview_solve() {
// Random upper-triangular system.
Eigen::MatrixXd A = Eigen::MatrixXd::Random(5, 5);
A.triangularView<Eigen::Lower>().setZero();
A.diagonal().setRandom();
Eigen::VectorXd b = Eigen::VectorXd::Random(5);
struct trivial_view_op {
double& operator()(double& x) const { return x; }
const double& operator()(const double& x) const { return x; }
};
// Non-const view:
{
auto b_view = b.unaryViewExpr(trivial_view_op());
b_view(0) = 1; // Allows modification.
Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view);
VERIFY_IS_APPROX(A * x, b);
}
// Const view:
{
const auto b_view = b.unaryViewExpr(trivial_view_op());
Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view);
VERIFY_IS_APPROX(A * x, b);
}
// Non-const view of const matrix:
{
const Eigen::VectorXd const_b = b;
auto b_view = const_b.unaryViewExpr(trivial_view_op());
Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view);
VERIFY_IS_APPROX(A * x, b);
}
// Const view of const matrix:
{
const Eigen::VectorXd const_b = b;
const auto b_view = const_b.unaryViewExpr(trivial_view_op());
Eigen::VectorXd x = A.triangularView<Eigen::Upper>().solve(b_view);
VERIFY_IS_APPROX(A * x, b);
}
// Eigen::MatrixXd out =
// mat_in.real()
// .triangularView<Eigen::Upper>()
// .solve(mat_in.unaryViewExpr([&](const auto& x){ return std::real(x); }));
}
EIGEN_DECLARE_TEST(unaryviewstride) {
CALL_SUBTEST_1((unaryview_stride<1, 2>(MatrixXf())));
CALL_SUBTEST_1((unaryview_stride<0, 0>(MatrixXf())));
CALL_SUBTEST_2((unaryview_stride<1, 2>(VectorXf())));
CALL_SUBTEST_2((unaryview_stride<0, 0>(VectorXf())));
CALL_SUBTEST_3((unaryview_stride<1, 2>(RowVectorXf())));
CALL_SUBTEST_3((unaryview_stride<0, 0>(RowVectorXf())));
CALL_SUBTEST_4(test_mutable_unaryview());
CALL_SUBTEST_4(test_unaryview_solve());
}