| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| |
| #include "main.h" |
| |
| template <typename ArrayType> |
| void vectorwiseop_array(const ArrayType& m) { |
| typedef typename ArrayType::Scalar Scalar; |
| typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); |
| |
| ColVectorType colvec = ColVectorType::Random(rows); |
| RowVectorType rowvec = RowVectorType::Random(cols); |
| |
| // test addition |
| m2 = m1; |
| m2.colwise() += colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() + colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); |
| |
| m2 = m1; |
| m2.rowwise() += rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); |
| |
| // test subtraction |
| m2 = m1; |
| m2.colwise() -= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() - colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); |
| |
| m2 = m1; |
| m2.rowwise() -= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); |
| |
| // test multiplication |
| m2 = m1; |
| m2.colwise() *= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() * colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); |
| |
| m2 = m1; |
| m2.rowwise() *= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); |
| |
| // test quotient |
| m2 = m1; |
| m2.colwise() /= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() / colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); |
| |
| m2 = m1; |
| m2.rowwise() /= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); |
| |
| m2 = m1; |
| // yes, there might be an aliasing issue there but ".rowwise() /=" |
| // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid |
| // evaluating the reduction multiple times |
| if (ArrayType::RowsAtCompileTime > 2 || ArrayType::RowsAtCompileTime == Dynamic) { |
| m2.rowwise() /= m2.colwise().sum(); |
| VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); |
| } |
| |
| // all/any |
| Array<bool, Dynamic, Dynamic> mb(rows, cols); |
| mb = (m1.real() <= 0.7).colwise().all(); |
| VERIFY((mb.col(c) == (m1.real().col(c) <= 0.7).all()).all()); |
| mb = (m1.real() <= 0.7).rowwise().all(); |
| VERIFY((mb.row(r) == (m1.real().row(r) <= 0.7).all()).all()); |
| |
| mb = (m1.real() >= 0.7).colwise().any(); |
| VERIFY((mb.col(c) == (m1.real().col(c) >= 0.7).any()).all()); |
| mb = (m1.real() >= 0.7).rowwise().any(); |
| VERIFY((mb.row(r) == (m1.real().row(r) >= 0.7).any()).all()); |
| } |
| |
| template <typename MatrixType> |
| void vectorwiseop_matrix(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType; |
| typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); |
| |
| ColVectorType colvec = ColVectorType::Random(rows); |
| RowVectorType rowvec = RowVectorType::Random(cols); |
| RealColVectorType rcres; |
| RealRowVectorType rrres; |
| |
| // test broadcast assignment |
| m2 = m1; |
| m2.colwise() = colvec; |
| for (Index j = 0; j < cols; ++j) VERIFY_IS_APPROX(m2.col(j), colvec); |
| m2.rowwise() = rowvec; |
| for (Index i = 0; i < rows; ++i) VERIFY_IS_APPROX(m2.row(i), rowvec); |
| |
| // test addition |
| m2 = m1; |
| m2.colwise() += colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() + colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); |
| |
| m2 = m1; |
| m2.rowwise() += rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); |
| |
| // test subtraction |
| m2 = m1; |
| m2.colwise() -= colvec; |
| VERIFY_IS_APPROX(m2, m1.colwise() - colvec); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); |
| |
| m2 = m1; |
| m2.rowwise() -= rowvec; |
| VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); |
| |
| // ------ partial reductions ------ |
| |
| #define TEST_PARTIAL_REDUX_BASIC(FUNC, ROW, COL, PREPROCESS) \ |
| { \ |
| ROW = m1 PREPROCESS.colwise().FUNC; \ |
| for (Index k = 0; k < cols; ++k) VERIFY_IS_APPROX(ROW(k), m1.col(k) PREPROCESS.FUNC); \ |
| COL = m1 PREPROCESS.rowwise().FUNC; \ |
| for (Index k = 0; k < rows; ++k) VERIFY_IS_APPROX(COL(k), m1.row(k) PREPROCESS.FUNC); \ |
| } |
| |
| TEST_PARTIAL_REDUX_BASIC(sum(), rowvec, colvec, EIGEN_EMPTY); |
| TEST_PARTIAL_REDUX_BASIC(prod(), rowvec, colvec, EIGEN_EMPTY); |
| TEST_PARTIAL_REDUX_BASIC(mean(), rowvec, colvec, EIGEN_EMPTY); |
| TEST_PARTIAL_REDUX_BASIC(minCoeff(), rrres, rcres, .real()); |
| TEST_PARTIAL_REDUX_BASIC(maxCoeff(), rrres, rcres, .real()); |
| TEST_PARTIAL_REDUX_BASIC(norm(), rrres, rcres, EIGEN_EMPTY); |
| TEST_PARTIAL_REDUX_BASIC(squaredNorm(), rrres, rcres, EIGEN_EMPTY); |
| TEST_PARTIAL_REDUX_BASIC(redux(internal::scalar_sum_op<Scalar, Scalar>()), rowvec, colvec, EIGEN_EMPTY); |
| |
| VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); |
| VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); |
| VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>()); |
| VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>()); |
| |
| // regression for bug 1158 |
| VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum()); |
| |
| // test normalized |
| m2 = m1.colwise().normalized(); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); |
| m2 = m1.rowwise().normalized(); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); |
| |
| // test normalize |
| m2 = m1; |
| m2.colwise().normalize(); |
| VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); |
| m2 = m1; |
| m2.rowwise().normalize(); |
| VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); |
| |
| // test with partial reduction of products |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose(); |
| VERIFY_IS_APPROX((m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); |
| Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> tmp(rows); |
| VERIFY_EVALUATION_COUNT(tmp = (m1 * m1.transpose()).colwise().sum(), 1); |
| |
| m2 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())).eval(); |
| m1 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())); |
| VERIFY_IS_APPROX(m1, m2); |
| VERIFY_EVALUATION_COUNT(m2 = (m1.rowwise() - m1.colwise().sum() / RealScalar(m1.rows())), |
| (MatrixType::RowsAtCompileTime != 1 ? 1 : 0)); |
| |
| // test empty expressions |
| VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().sum().eval(), MatrixX::Zero(rows, 1)); |
| VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().sum().eval(), MatrixX::Zero(1, cols)); |
| VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows, 1)); |
| VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().sum().eval(), MatrixX::Zero(1, cols)); |
| |
| VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().prod().eval(), MatrixX::Ones(rows, 1)); |
| VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().prod().eval(), MatrixX::Ones(1, cols)); |
| VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows, 1)); |
| VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().prod().eval(), MatrixX::Ones(1, cols)); |
| VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows, 1)); |
| |
| VERIFY_IS_EQUAL(m1.real().middleRows(0, 0).rowwise().maxCoeff().eval().rows(), 0); |
| VERIFY_IS_EQUAL(m1.real().middleCols(0, 0).colwise().maxCoeff().eval().cols(), 0); |
| VERIFY_IS_EQUAL(m1.real().middleRows(0, fix<0>).rowwise().maxCoeff().eval().rows(), 0); |
| VERIFY_IS_EQUAL(m1.real().middleCols(0, fix<0>).colwise().maxCoeff().eval().cols(), 0); |
| } |
| |
| EIGEN_DECLARE_TEST(vectorwiseop) { |
| CALL_SUBTEST_1(vectorwiseop_array(Array22cd())); |
| CALL_SUBTEST_2(vectorwiseop_array(Array<double, 3, 2>())); |
| CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4))); |
| CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf())); |
| CALL_SUBTEST_5(vectorwiseop_matrix(Matrix4f())); |
| CALL_SUBTEST_5(vectorwiseop_matrix(Vector4f())); |
| CALL_SUBTEST_5(vectorwiseop_matrix(Matrix<float, 4, 5>())); |
| CALL_SUBTEST_6(vectorwiseop_matrix( |
| MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(vectorwiseop_matrix(VectorXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(vectorwiseop_matrix(RowVectorXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |