|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_REAL_QZ_H | 
|  | #define EIGEN_REAL_QZ_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class RealQZ | 
|  | * | 
|  | * \brief Performs a real QZ decomposition of a pair of square matrices | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the | 
|  | * real QZ decomposition; this is expected to be an instantiation of the | 
|  | * Matrix class template. | 
|  | * | 
|  | * Given a real square matrices A and B, this class computes the real QZ | 
|  | * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are | 
|  | * real orthogonal matrixes, T is upper-triangular matrix, and S is upper | 
|  | * quasi-triangular matrix. An orthogonal matrix is a matrix whose | 
|  | * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular | 
|  | * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 | 
|  | * blocks and 2-by-2 blocks where further reduction is impossible due to | 
|  | * complex eigenvalues. | 
|  | * | 
|  | * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from | 
|  | * 1x1 and 2x2 blocks on the diagonals of S and T. | 
|  | * | 
|  | * Call the function compute() to compute the real QZ decomposition of a | 
|  | * given pair of matrices. Alternatively, you can use the | 
|  | * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ) | 
|  | * constructor which computes the real QZ decomposition at construction | 
|  | * time. Once the decomposition is computed, you can use the matrixS(), | 
|  | * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices | 
|  | * S, T, Q and Z in the decomposition. If computeQZ==false, some time | 
|  | * is saved by not computing matrices Q and Z. | 
|  | * | 
|  | * Example: \include RealQZ_compute.cpp | 
|  | * Output: \include RealQZ_compute.out | 
|  | * | 
|  | * \note The implementation is based on the algorithm in "Matrix Computations" | 
|  | * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for | 
|  | * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart. | 
|  | * | 
|  | * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver | 
|  | */ | 
|  |  | 
|  | template<typename MatrixType_> class RealQZ | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * \param [in] size  Positive integer, size of the matrix whose QZ decomposition will be computed. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via compute().  The \p size parameter is only | 
|  | * used as a hint. It is not an error to give a wrong \p size, but it may | 
|  | * impair performance. | 
|  | * | 
|  | * \sa compute() for an example. | 
|  | */ | 
|  | explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : | 
|  | m_S(size, size), | 
|  | m_T(size, size), | 
|  | m_Q(size, size), | 
|  | m_Z(size, size), | 
|  | m_workspace(size*2), | 
|  | m_maxIters(400), | 
|  | m_isInitialized(false), | 
|  | m_computeQZ(true) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes real QZ decomposition of given matrices | 
|  | * | 
|  | * \param[in]  A          Matrix A. | 
|  | * \param[in]  B          Matrix B. | 
|  | * \param[in]  computeQZ  If false, A and Z are not computed. | 
|  | * | 
|  | * This constructor calls compute() to compute the QZ decomposition. | 
|  | */ | 
|  | RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) : | 
|  | m_S(A.rows(),A.cols()), | 
|  | m_T(A.rows(),A.cols()), | 
|  | m_Q(A.rows(),A.cols()), | 
|  | m_Z(A.rows(),A.cols()), | 
|  | m_workspace(A.rows()*2), | 
|  | m_maxIters(400), | 
|  | m_isInitialized(false), | 
|  | m_computeQZ(true) | 
|  | { | 
|  | compute(A, B, computeQZ); | 
|  | } | 
|  |  | 
|  | /** \brief Returns matrix Q in the QZ decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix Q. | 
|  | */ | 
|  | const MatrixType& matrixQ() const { | 
|  | eigen_assert(m_isInitialized && "RealQZ is not initialized."); | 
|  | eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); | 
|  | return m_Q; | 
|  | } | 
|  |  | 
|  | /** \brief Returns matrix Z in the QZ decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix Z. | 
|  | */ | 
|  | const MatrixType& matrixZ() const { | 
|  | eigen_assert(m_isInitialized && "RealQZ is not initialized."); | 
|  | eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); | 
|  | return m_Z; | 
|  | } | 
|  |  | 
|  | /** \brief Returns matrix S in the QZ decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix S. | 
|  | */ | 
|  | const MatrixType& matrixS() const { | 
|  | eigen_assert(m_isInitialized && "RealQZ is not initialized."); | 
|  | return m_S; | 
|  | } | 
|  |  | 
|  | /** \brief Returns matrix S in the QZ decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix S. | 
|  | */ | 
|  | const MatrixType& matrixT() const { | 
|  | eigen_assert(m_isInitialized && "RealQZ is not initialized."); | 
|  | return m_T; | 
|  | } | 
|  |  | 
|  | /** \brief Computes QZ decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  A          Matrix A. | 
|  | * \param[in]  B          Matrix B. | 
|  | * \param[in]  computeQZ  If false, A and Z are not computed. | 
|  | * \returns    Reference to \c *this | 
|  | */ | 
|  | RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true); | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "RealQZ is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Returns number of performed QR-like iterations. | 
|  | */ | 
|  | Index iterations() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "RealQZ is not initialized."); | 
|  | return m_global_iter; | 
|  | } | 
|  |  | 
|  | /** Sets the maximal number of iterations allowed to converge to one eigenvalue | 
|  | * or decouple the problem. | 
|  | */ | 
|  | RealQZ& setMaxIterations(Index maxIters) | 
|  | { | 
|  | m_maxIters = maxIters; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | MatrixType m_S, m_T, m_Q, m_Z; | 
|  | Matrix<Scalar,Dynamic,1> m_workspace; | 
|  | ComputationInfo m_info; | 
|  | Index m_maxIters; | 
|  | bool m_isInitialized; | 
|  | bool m_computeQZ; | 
|  | Scalar m_normOfT, m_normOfS; | 
|  | Index m_global_iter; | 
|  |  | 
|  | typedef Matrix<Scalar,3,1> Vector3s; | 
|  | typedef Matrix<Scalar,2,1> Vector2s; | 
|  | typedef Matrix<Scalar,2,2> Matrix2s; | 
|  | typedef JacobiRotation<Scalar> JRs; | 
|  |  | 
|  | void hessenbergTriangular(); | 
|  | void computeNorms(); | 
|  | Index findSmallSubdiagEntry(Index iu); | 
|  | Index findSmallDiagEntry(Index f, Index l); | 
|  | void splitOffTwoRows(Index i); | 
|  | void pushDownZero(Index z, Index f, Index l); | 
|  | void step(Index f, Index l, Index iter); | 
|  |  | 
|  | }; // RealQZ | 
|  |  | 
|  | /** \internal Reduces S and T to upper Hessenberg - triangular form */ | 
|  | template<typename MatrixType> | 
|  | void RealQZ<MatrixType>::hessenbergTriangular() | 
|  | { | 
|  |  | 
|  | const Index dim = m_S.cols(); | 
|  |  | 
|  | // perform QR decomposition of T, overwrite T with R, save Q | 
|  | HouseholderQR<MatrixType> qrT(m_T); | 
|  | m_T = qrT.matrixQR(); | 
|  | m_T.template triangularView<StrictlyLower>().setZero(); | 
|  | m_Q = qrT.householderQ(); | 
|  | // overwrite S with Q* S | 
|  | m_S.applyOnTheLeft(m_Q.adjoint()); | 
|  | // init Z as Identity | 
|  | if (m_computeQZ) | 
|  | m_Z = MatrixType::Identity(dim,dim); | 
|  | // reduce S to upper Hessenberg with Givens rotations | 
|  | for (Index j=0; j<=dim-3; j++) { | 
|  | for (Index i=dim-1; i>=j+2; i--) { | 
|  | JRs G; | 
|  | // kill S(i,j) | 
|  | if(m_S.coeff(i,j) != 0) | 
|  | { | 
|  | G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j)); | 
|  | m_S.coeffRef(i,j) = Scalar(0.0); | 
|  | m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint()); | 
|  | m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint()); | 
|  | // update Q | 
|  | if (m_computeQZ) | 
|  | m_Q.applyOnTheRight(i-1,i,G); | 
|  | } | 
|  | // kill T(i,i-1) | 
|  | if(m_T.coeff(i,i-1)!=Scalar(0)) | 
|  | { | 
|  | G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i)); | 
|  | m_T.coeffRef(i,i-1) = Scalar(0.0); | 
|  | m_S.applyOnTheRight(i,i-1,G); | 
|  | m_T.topRows(i).applyOnTheRight(i,i-1,G); | 
|  | // update Z | 
|  | if (m_computeQZ) | 
|  | m_Z.applyOnTheLeft(i,i-1,G.adjoint()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */ | 
|  | template<typename MatrixType> | 
|  | inline void RealQZ<MatrixType>::computeNorms() | 
|  | { | 
|  | const Index size = m_S.cols(); | 
|  | m_normOfS = Scalar(0.0); | 
|  | m_normOfT = Scalar(0.0); | 
|  | for (Index j = 0; j < size; ++j) | 
|  | { | 
|  | m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); | 
|  | m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */ | 
|  | template<typename MatrixType> | 
|  | inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) | 
|  | { | 
|  | using std::abs; | 
|  | Index res = iu; | 
|  | while (res > 0) | 
|  | { | 
|  | Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res)); | 
|  | if (s == Scalar(0.0)) | 
|  | s = m_normOfS; | 
|  | if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s) | 
|  | break; | 
|  | res--; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1)  */ | 
|  | template<typename MatrixType> | 
|  | inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) | 
|  | { | 
|  | using std::abs; | 
|  | Index res = l; | 
|  | while (res >= f) { | 
|  | if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT) | 
|  | break; | 
|  | res--; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */ | 
|  | template<typename MatrixType> | 
|  | inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) | 
|  | { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | const Index dim=m_S.cols(); | 
|  | if (abs(m_S.coeff(i+1,i))==Scalar(0)) | 
|  | return; | 
|  | Index j = findSmallDiagEntry(i,i+1); | 
|  | if (j==i-1) | 
|  | { | 
|  | // block of (S T^{-1}) | 
|  | Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>(). | 
|  | template solve<OnTheRight>(m_S.template block<2,2>(i,i)); | 
|  | Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1)); | 
|  | Scalar q = p*p + STi(1,0)*STi(0,1); | 
|  | if (q>=0) { | 
|  | Scalar z = sqrt(q); | 
|  | // one QR-like iteration for ABi - lambda I | 
|  | // is enough - when we know exact eigenvalue in advance, | 
|  | // convergence is immediate | 
|  | JRs G; | 
|  | if (p>=0) | 
|  | G.makeGivens(p + z, STi(1,0)); | 
|  | else | 
|  | G.makeGivens(p - z, STi(1,0)); | 
|  | m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); | 
|  | m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); | 
|  | // update Q | 
|  | if (m_computeQZ) | 
|  | m_Q.applyOnTheRight(i,i+1,G); | 
|  |  | 
|  | G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i)); | 
|  | m_S.topRows(i+2).applyOnTheRight(i+1,i,G); | 
|  | m_T.topRows(i+2).applyOnTheRight(i+1,i,G); | 
|  | // update Z | 
|  | if (m_computeQZ) | 
|  | m_Z.applyOnTheLeft(i+1,i,G.adjoint()); | 
|  |  | 
|  | m_S.coeffRef(i+1,i) = Scalar(0.0); | 
|  | m_T.coeffRef(i+1,i) = Scalar(0.0); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | pushDownZero(j,i,i+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */ | 
|  | template<typename MatrixType> | 
|  | inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) | 
|  | { | 
|  | JRs G; | 
|  | const Index dim = m_S.cols(); | 
|  | for (Index zz=z; zz<l; zz++) | 
|  | { | 
|  | // push 0 down | 
|  | Index firstColS = zz>f ? (zz-1) : zz; | 
|  | G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1)); | 
|  | m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint()); | 
|  | m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint()); | 
|  | m_T.coeffRef(zz+1,zz+1) = Scalar(0.0); | 
|  | // update Q | 
|  | if (m_computeQZ) | 
|  | m_Q.applyOnTheRight(zz,zz+1,G); | 
|  | // kill S(zz+1, zz-1) | 
|  | if (zz>f) | 
|  | { | 
|  | G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1)); | 
|  | m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G); | 
|  | m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G); | 
|  | m_S.coeffRef(zz+1,zz-1) = Scalar(0.0); | 
|  | // update Z | 
|  | if (m_computeQZ) | 
|  | m_Z.applyOnTheLeft(zz,zz-1,G.adjoint()); | 
|  | } | 
|  | } | 
|  | // finally kill S(l,l-1) | 
|  | G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1)); | 
|  | m_S.applyOnTheRight(l,l-1,G); | 
|  | m_T.applyOnTheRight(l,l-1,G); | 
|  | m_S.coeffRef(l,l-1)=Scalar(0.0); | 
|  | // update Z | 
|  | if (m_computeQZ) | 
|  | m_Z.applyOnTheLeft(l,l-1,G.adjoint()); | 
|  | } | 
|  |  | 
|  | /** \internal QR-like iterative step for block f..l */ | 
|  | template<typename MatrixType> | 
|  | inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) | 
|  | { | 
|  | using std::abs; | 
|  | const Index dim = m_S.cols(); | 
|  |  | 
|  | // x, y, z | 
|  | Scalar x, y, z; | 
|  | if (iter==10) | 
|  | { | 
|  | // Wilkinson ad hoc shift | 
|  | const Scalar | 
|  | a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1), | 
|  | a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1), | 
|  | b12=m_T.coeff(f+0,f+1), | 
|  | b11i=Scalar(1.0)/m_T.coeff(f+0,f+0), | 
|  | b22i=Scalar(1.0)/m_T.coeff(f+1,f+1), | 
|  | a87=m_S.coeff(l-1,l-2), | 
|  | a98=m_S.coeff(l-0,l-1), | 
|  | b77i=Scalar(1.0)/m_T.coeff(l-2,l-2), | 
|  | b88i=Scalar(1.0)/m_T.coeff(l-1,l-1); | 
|  | Scalar ss = abs(a87*b77i) + abs(a98*b88i), | 
|  | lpl = Scalar(1.5)*ss, | 
|  | ll = ss*ss; | 
|  | x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i | 
|  | - a11*a21*b12*b11i*b11i*b22i; | 
|  | y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i | 
|  | - a21*a21*b12*b11i*b11i*b22i; | 
|  | z = a21*a32*b11i*b22i; | 
|  | } | 
|  | else if (iter==16) | 
|  | { | 
|  | // another exceptional shift | 
|  | x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) / | 
|  | (m_T.coeff(l-1,l-1)*m_T.coeff(l,l)); | 
|  | y = m_S.coeff(f+1,f)/m_T.coeff(f,f); | 
|  | z = 0; | 
|  | } | 
|  | else if (iter>23 && !(iter%8)) | 
|  | { | 
|  | // extremely exceptional shift | 
|  | x = internal::random<Scalar>(-1.0,1.0); | 
|  | y = internal::random<Scalar>(-1.0,1.0); | 
|  | z = internal::random<Scalar>(-1.0,1.0); | 
|  | } | 
|  | else | 
|  | { | 
|  | // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1 | 
|  | // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where | 
|  | // U and V are 2x2 bottom right sub matrices of A and B. Thus: | 
|  | //  = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1) | 
|  | //  = AB^-1AB^-1 + det(M) - tr(M)(AB^-1) | 
|  | // Since we are only interested in having x, y, z with a correct ratio, we have: | 
|  | const Scalar | 
|  | a11 = m_S.coeff(f,f),     a12 = m_S.coeff(f,f+1), | 
|  | a21 = m_S.coeff(f+1,f),   a22 = m_S.coeff(f+1,f+1), | 
|  | a32 = m_S.coeff(f+2,f+1), | 
|  |  | 
|  | a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l), | 
|  | a98 = m_S.coeff(l,l-1),   a99 = m_S.coeff(l,l), | 
|  |  | 
|  | b11 = m_T.coeff(f,f),     b12 = m_T.coeff(f,f+1), | 
|  | b22 = m_T.coeff(f+1,f+1), | 
|  |  | 
|  | b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l), | 
|  | b99 = m_T.coeff(l,l); | 
|  |  | 
|  | x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21) | 
|  | + a12/b22 - (a11/b11)*(b12/b22); | 
|  | y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99); | 
|  | z = a32/b22; | 
|  | } | 
|  |  | 
|  | JRs G; | 
|  |  | 
|  | for (Index k=f; k<=l-2; k++) | 
|  | { | 
|  | // variables for Householder reflections | 
|  | Vector2s essential2; | 
|  | Scalar tau, beta; | 
|  |  | 
|  | Vector3s hr(x,y,z); | 
|  |  | 
|  | // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1) | 
|  | hr.makeHouseholderInPlace(tau, beta); | 
|  | essential2 = hr.template bottomRows<2>(); | 
|  | Index fc=(std::max)(k-1,Index(0));  // first col to update | 
|  | m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); | 
|  | m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); | 
|  | if (m_computeQZ) | 
|  | m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data()); | 
|  | if (k>f) | 
|  | m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0); | 
|  |  | 
|  | // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k) | 
|  | hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1); | 
|  | hr.makeHouseholderInPlace(tau, beta); | 
|  | essential2 = hr.template bottomRows<2>(); | 
|  | { | 
|  | Index lr = (std::min)(k+4,dim); // last row to update | 
|  | Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr); | 
|  | // S | 
|  | tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2; | 
|  | tmp += m_S.col(k+2).head(lr); | 
|  | m_S.col(k+2).head(lr) -= tau*tmp; | 
|  | m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); | 
|  | // T | 
|  | tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2; | 
|  | tmp += m_T.col(k+2).head(lr); | 
|  | m_T.col(k+2).head(lr) -= tau*tmp; | 
|  | m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); | 
|  | } | 
|  | if (m_computeQZ) | 
|  | { | 
|  | // Z | 
|  | Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim); | 
|  | tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k)); | 
|  | tmp += m_Z.row(k+2); | 
|  | m_Z.row(k+2) -= tau*tmp; | 
|  | m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp); | 
|  | } | 
|  | m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0); | 
|  |  | 
|  | // Z_{k2} to annihilate T(k+1,k) | 
|  | G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k)); | 
|  | m_S.applyOnTheRight(k+1,k,G); | 
|  | m_T.applyOnTheRight(k+1,k,G); | 
|  | // update Z | 
|  | if (m_computeQZ) | 
|  | m_Z.applyOnTheLeft(k+1,k,G.adjoint()); | 
|  | m_T.coeffRef(k+1,k) = Scalar(0.0); | 
|  |  | 
|  | // update x,y,z | 
|  | x = m_S.coeff(k+1,k); | 
|  | y = m_S.coeff(k+2,k); | 
|  | if (k < l-2) | 
|  | z = m_S.coeff(k+3,k); | 
|  | } // loop over k | 
|  |  | 
|  | // Q_{n-1} to annihilate y = S(l,l-2) | 
|  | G.makeGivens(x,y); | 
|  | m_S.applyOnTheLeft(l-1,l,G.adjoint()); | 
|  | m_T.applyOnTheLeft(l-1,l,G.adjoint()); | 
|  | if (m_computeQZ) | 
|  | m_Q.applyOnTheRight(l-1,l,G); | 
|  | m_S.coeffRef(l,l-2) = Scalar(0.0); | 
|  |  | 
|  | // Z_{n-1} to annihilate T(l,l-1) | 
|  | G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1)); | 
|  | m_S.applyOnTheRight(l,l-1,G); | 
|  | m_T.applyOnTheRight(l,l-1,G); | 
|  | if (m_computeQZ) | 
|  | m_Z.applyOnTheLeft(l,l-1,G.adjoint()); | 
|  | m_T.coeffRef(l,l-1) = Scalar(0.0); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) | 
|  | { | 
|  |  | 
|  | const Index dim = A_in.cols(); | 
|  |  | 
|  | eigen_assert (A_in.rows()==dim && A_in.cols()==dim | 
|  | && B_in.rows()==dim && B_in.cols()==dim | 
|  | && "Need square matrices of the same dimension"); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_computeQZ = computeQZ; | 
|  | m_S = A_in; m_T = B_in; | 
|  | m_workspace.resize(dim*2); | 
|  | m_global_iter = 0; | 
|  |  | 
|  | // entrance point: hessenberg triangular decomposition | 
|  | hessenbergTriangular(); | 
|  | // compute L1 vector norms of T, S into m_normOfS, m_normOfT | 
|  | computeNorms(); | 
|  |  | 
|  | Index l = dim-1, | 
|  | f, | 
|  | local_iter = 0; | 
|  |  | 
|  | while (l>0 && local_iter<m_maxIters) | 
|  | { | 
|  | f = findSmallSubdiagEntry(l); | 
|  | // now rows and columns f..l (including) decouple from the rest of the problem | 
|  | if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0); | 
|  | if (f == l) // One root found | 
|  | { | 
|  | l--; | 
|  | local_iter = 0; | 
|  | } | 
|  | else if (f == l-1) // Two roots found | 
|  | { | 
|  | splitOffTwoRows(f); | 
|  | l -= 2; | 
|  | local_iter = 0; | 
|  | } | 
|  | else // No convergence yet | 
|  | { | 
|  | // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations | 
|  | Index z = findSmallDiagEntry(f,l); | 
|  | if (z>=f) | 
|  | { | 
|  | // zero found | 
|  | pushDownZero(z,f,l); | 
|  | } | 
|  | else | 
|  | { | 
|  | // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg | 
|  | // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to | 
|  | // apply a QR-like iteration to rows and columns f..l. | 
|  | step(f,l, local_iter); | 
|  | local_iter++; | 
|  | m_global_iter++; | 
|  | } | 
|  | } | 
|  | } | 
|  | // check if we converged before reaching iterations limit | 
|  | m_info = (local_iter<m_maxIters) ? Success : NoConvergence; | 
|  |  | 
|  | // For each non triangular 2x2 diagonal block of S, | 
|  | //    reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD. | 
|  | // This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors, | 
|  | // and is in par with Lapack/Matlab QZ. | 
|  | if(m_info==Success) | 
|  | { | 
|  | for(Index i=0; i<dim-1; ++i) | 
|  | { | 
|  | if(m_S.coeff(i+1, i) != Scalar(0)) | 
|  | { | 
|  | JacobiRotation<Scalar> j_left, j_right; | 
|  | internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right); | 
|  |  | 
|  | // Apply resulting Jacobi rotations | 
|  | m_S.applyOnTheLeft(i,i+1,j_left); | 
|  | m_S.applyOnTheRight(i,i+1,j_right); | 
|  | m_T.applyOnTheLeft(i,i+1,j_left); | 
|  | m_T.applyOnTheRight(i,i+1,j_right); | 
|  | m_T(i+1,i) = m_T(i,i+1) = Scalar(0); | 
|  |  | 
|  | if(m_computeQZ) { | 
|  | m_Q.applyOnTheRight(i,i+1,j_left.transpose()); | 
|  | m_Z.applyOnTheLeft(i,i+1,j_right.transpose()); | 
|  | } | 
|  |  | 
|  | i++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return *this; | 
|  | } // end compute | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif //EIGEN_REAL_QZ |