|  | /* | 
|  | Copyright (c) 2011, Intel Corporation. All rights reserved. | 
|  |  | 
|  | Redistribution and use in source and binary forms, with or without modification, | 
|  | are permitted provided that the following conditions are met: | 
|  |  | 
|  | * Redistributions of source code must retain the above copyright notice, this | 
|  | list of conditions and the following disclaimer. | 
|  | * Redistributions in binary form must reproduce the above copyright notice, | 
|  | this list of conditions and the following disclaimer in the documentation | 
|  | and/or other materials provided with the distribution. | 
|  | * Neither the name of Intel Corporation nor the names of its contributors may | 
|  | be used to endorse or promote products derived from this software without | 
|  | specific prior written permission. | 
|  |  | 
|  | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | 
|  | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR | 
|  | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
|  | ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
|  | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | ******************************************************************************** | 
|  | *   Content : Eigen bindings to LAPACKe | 
|  | *    Self-adjoint eigenvalues/eigenvectors. | 
|  | ******************************************************************************** | 
|  | */ | 
|  |  | 
|  | #ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H | 
|  | #define EIGEN_SAEIGENSOLVER_LAPACKE_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \internal Specialization for the data types supported by LAPACKe */ | 
|  |  | 
|  | #define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \ | 
|  | template<> template<typename InputType> inline \ | 
|  | SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \ | 
|  | SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \ | 
|  | { \ | 
|  | eigen_assert(matrix.cols() == matrix.rows()); \ | 
|  | eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ | 
|  | && (options&EigVecMask)!=EigVecMask \ | 
|  | && "invalid option parameter"); \ | 
|  | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ | 
|  | lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \ | 
|  | m_eivalues.resize(n,1); \ | 
|  | m_subdiag.resize(n-1); \ | 
|  | m_eivec = matrix; \ | 
|  | \ | 
|  | if(n==1) \ | 
|  | { \ | 
|  | m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \ | 
|  | if(computeEigenvectors) m_eivec.setOnes(n,n); \ | 
|  | m_info = Success; \ | 
|  | m_isInitialized = true; \ | 
|  | m_eigenvectorsOk = computeEigenvectors; \ | 
|  | return *this; \ | 
|  | } \ | 
|  | \ | 
|  | lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \ | 
|  | char jobz, uplo='L'/*, range='A'*/; \ | 
|  | jobz = computeEigenvectors ? 'V' : 'N'; \ | 
|  | \ | 
|  | info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \ | 
|  | m_info = (info==0) ? Success : NoConvergence; \ | 
|  | m_isInitialized = true; \ | 
|  | m_eigenvectorsOk = computeEigenvectors; \ | 
|  | return *this; \ | 
|  | } | 
|  |  | 
|  | #define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME )              \ | 
|  | EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor )  \ | 
|  | EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor ) | 
|  |  | 
|  | EIGEN_LAPACKE_EIG_SELFADJ(double,   double,                double, dsyev) | 
|  | EIGEN_LAPACKE_EIG_SELFADJ(float,    float,                 float,  ssyev) | 
|  | EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev) | 
|  | EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float,  float,  cheev) | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SAEIGENSOLVER_H |