|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ROTATION2D_H | 
|  | #define EIGEN_ROTATION2D_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Rotation2D | 
|  | * | 
|  | * \brief Represents a rotation/orientation in a 2 dimensional space. | 
|  | * | 
|  | * \tparam Scalar_ the scalar type, i.e., the type of the coefficients | 
|  | * | 
|  | * This class is equivalent to a single scalar representing a counter clock wise rotation | 
|  | * as a single angle in radian. It provides some additional features such as the automatic | 
|  | * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar | 
|  | * interface to Quaternion in order to facilitate the writing of generic algorithms | 
|  | * dealing with rotations. | 
|  | * | 
|  | * \sa class Quaternion, class Transform | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Scalar_> struct traits<Rotation2D<Scalar_> > | 
|  | { | 
|  | typedef Scalar_ Scalar; | 
|  | }; | 
|  | } // end namespace internal | 
|  |  | 
|  | template<typename Scalar_> | 
|  | class Rotation2D : public RotationBase<Rotation2D<Scalar_>,2> | 
|  | { | 
|  | typedef RotationBase<Rotation2D<Scalar_>,2> Base; | 
|  |  | 
|  | public: | 
|  |  | 
|  | using Base::operator*; | 
|  |  | 
|  | enum { Dim = 2 }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef Scalar_ Scalar; | 
|  | typedef Matrix<Scalar,2,1> Vector2; | 
|  | typedef Matrix<Scalar,2,2> Matrix2; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | Scalar m_angle; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ | 
|  | EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} | 
|  |  | 
|  | /** Default constructor wihtout initialization. The represented rotation is undefined. */ | 
|  | EIGEN_DEVICE_FUNC Rotation2D() {} | 
|  |  | 
|  | /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. | 
|  | * | 
|  | * \sa fromRotationMatrix() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) | 
|  | { | 
|  | fromRotationMatrix(m.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the rotation angle */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } | 
|  |  | 
|  | /** \returns a read-write reference to the rotation angle */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } | 
|  |  | 
|  | /** \returns the rotation angle in [0,2pi] */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { | 
|  | Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); | 
|  | return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp; | 
|  | } | 
|  |  | 
|  | /** \returns the rotation angle in [-pi,pi] */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const { | 
|  | Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); | 
|  | if(tmp>Scalar(EIGEN_PI))       tmp -= Scalar(2*EIGEN_PI); | 
|  | else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | /** \returns the inverse rotation */ | 
|  | EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const | 
|  | { return Rotation2D(m_angle + other.m_angle); } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) | 
|  | { m_angle += other.m_angle; return *this; } | 
|  |  | 
|  | /** Applies the rotation to a 2D vector */ | 
|  | EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const | 
|  | { return toRotationMatrix() * vec; } | 
|  |  | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); | 
|  | EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; | 
|  |  | 
|  | /** Set \c *this from a 2x2 rotation matrix \a mat. | 
|  | * In other words, this function extract the rotation angle from the rotation matrix. | 
|  | * | 
|  | * This method is an alias for fromRotationMatrix() | 
|  | * | 
|  | * \sa fromRotationMatrix() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC Rotation2D& operator=(const  MatrixBase<Derived>& m) | 
|  | { return fromRotationMatrix(m.derived()); } | 
|  |  | 
|  | /** \returns the spherical interpolation between \c *this and \a other using | 
|  | * parameter \a t. It is in fact equivalent to a linear interpolation. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const | 
|  | { | 
|  | Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); | 
|  | return Rotation2D(m_angle + dist*t); | 
|  | } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const | 
|  | { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) | 
|  | { | 
|  | m_angle = Scalar(other.angle()); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const | 
|  | { return internal::isApprox(m_angle,other.m_angle, prec); } | 
|  |  | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * single precision 2D rotation type */ | 
|  | typedef Rotation2D<float> Rotation2Df; | 
|  | /** \ingroup Geometry_Module | 
|  | * double precision 2D rotation type */ | 
|  | typedef Rotation2D<double> Rotation2Dd; | 
|  |  | 
|  | /** Set \c *this from a 2x2 rotation matrix \a mat. | 
|  | * In other words, this function extract the rotation angle | 
|  | * from the rotation matrix. | 
|  | */ | 
|  | template<typename Scalar> | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) | 
|  | { | 
|  | EIGEN_USING_STD(atan2) | 
|  | EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Constructs and \returns an equivalent 2x2 rotation matrix. | 
|  | */ | 
|  | template<typename Scalar> | 
|  | typename Rotation2D<Scalar>::Matrix2 | 
|  | EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const | 
|  | { | 
|  | EIGEN_USING_STD(sin) | 
|  | EIGEN_USING_STD(cos) | 
|  | Scalar sinA = sin(m_angle); | 
|  | Scalar cosA = cos(m_angle); | 
|  | return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_ROTATION2D_H |