|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H | 
|  | #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal Low-level conjugate gradient algorithm for least-square problems | 
|  | * \param mat The matrix A | 
|  | * \param rhs The right hand side vector b | 
|  | * \param x On input and initial solution, on output the computed solution. | 
|  | * \param precond A preconditioner being able to efficiently solve for an | 
|  | *                approximation of A'Ax=b (regardless of b) | 
|  | * \param iters On input the max number of iteration, on output the number of performed iterations. | 
|  | * \param tol_error On input the tolerance error, on output an estimation of the relative error. | 
|  | */ | 
|  | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | 
|  | EIGEN_DONT_INLINE | 
|  | void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, | 
|  | const Preconditioner& precond, Index& iters, | 
|  | typename Dest::RealScalar& tol_error) | 
|  | { | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | typedef typename Dest::RealScalar RealScalar; | 
|  | typedef typename Dest::Scalar Scalar; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  |  | 
|  | RealScalar tol = tol_error; | 
|  | Index maxIters = iters; | 
|  |  | 
|  | Index m = mat.rows(), n = mat.cols(); | 
|  |  | 
|  | VectorType residual        = rhs - mat * x; | 
|  | VectorType normal_residual = mat.adjoint() * residual; | 
|  |  | 
|  | RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); | 
|  | if(rhsNorm2 == 0) | 
|  | { | 
|  | x.setZero(); | 
|  | iters = 0; | 
|  | tol_error = 0; | 
|  | return; | 
|  | } | 
|  | RealScalar threshold = tol*tol*rhsNorm2; | 
|  | RealScalar residualNorm2 = normal_residual.squaredNorm(); | 
|  | if (residualNorm2 < threshold) | 
|  | { | 
|  | iters = 0; | 
|  | tol_error = sqrt(residualNorm2 / rhsNorm2); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VectorType p(n); | 
|  | p = precond.solve(normal_residual);                         // initial search direction | 
|  |  | 
|  | VectorType z(n), tmp(m); | 
|  | RealScalar absNew = numext::real(normal_residual.dot(p));  // the square of the absolute value of r scaled by invM | 
|  | Index i = 0; | 
|  | while(i < maxIters) | 
|  | { | 
|  | tmp.noalias() = mat * p; | 
|  |  | 
|  | Scalar alpha = absNew / tmp.squaredNorm();      // the amount we travel on dir | 
|  | x += alpha * p;                                 // update solution | 
|  | residual -= alpha * tmp;                        // update residual | 
|  | normal_residual = mat.adjoint() * residual;     // update residual of the normal equation | 
|  |  | 
|  | residualNorm2 = normal_residual.squaredNorm(); | 
|  | if(residualNorm2 < threshold) | 
|  | break; | 
|  |  | 
|  | z = precond.solve(normal_residual);             // approximately solve for "A'A z = normal_residual" | 
|  |  | 
|  | RealScalar absOld = absNew; | 
|  | absNew = numext::real(normal_residual.dot(z));  // update the absolute value of r | 
|  | RealScalar beta = absNew / absOld;              // calculate the Gram-Schmidt value used to create the new search direction | 
|  | p = z + beta * p;                               // update search direction | 
|  | i++; | 
|  | } | 
|  | tol_error = sqrt(residualNorm2 / rhsNorm2); | 
|  | iters = i; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | template< typename MatrixType_, | 
|  | typename Preconditioner_ = LeastSquareDiagonalPreconditioner<typename MatrixType_::Scalar> > | 
|  | class LeastSquaresConjugateGradient; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | struct traits<LeastSquaresConjugateGradient<MatrixType_,Preconditioner_> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef Preconditioner_ Preconditioner; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A conjugate gradient solver for sparse (or dense) least-square problems | 
|  | * | 
|  | * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. | 
|  | * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. | 
|  | * Otherwise, the SparseLU or SparseQR classes might be preferable. | 
|  | * The matrix A and the vectors x and b can be either dense or sparse. | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix. | 
|  | * \tparam Preconditioner_ the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | 
|  | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | 
|  | * and NumTraits<Scalar>::epsilon() for the tolerance. | 
|  | * | 
|  | * This class can be used as the direct solver classes. Here is a typical usage example: | 
|  | \code | 
|  | int m=1000000, n = 10000; | 
|  | VectorXd x(n), b(m); | 
|  | SparseMatrix<double> A(m,n); | 
|  | // fill A and b | 
|  | LeastSquaresConjugateGradient<SparseMatrix<double> > lscg; | 
|  | lscg.compute(A); | 
|  | x = lscg.solve(b); | 
|  | std::cout << "#iterations:     " << lscg.iterations() << std::endl; | 
|  | std::cout << "estimated error: " << lscg.error()      << std::endl; | 
|  | // update b, and solve again | 
|  | x = lscg.solve(b); | 
|  | \endcode | 
|  | * | 
|  | * By default the iterations start with x=0 as an initial guess of the solution. | 
|  | * One can control the start using the solveWithGuess() method. | 
|  | * | 
|  | * \sa class ConjugateGradient, SparseLU, SparseQR | 
|  | */ | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<MatrixType_,Preconditioner_> > | 
|  | { | 
|  | typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base; | 
|  | using Base::matrix; | 
|  | using Base::m_error; | 
|  | using Base::m_iterations; | 
|  | using Base::m_info; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Preconditioner_ Preconditioner; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor. */ | 
|  | LeastSquaresConjugateGradient() : Base() {} | 
|  |  | 
|  | /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
|  | * | 
|  | * This constructor is a shortcut for the default constructor followed | 
|  | * by a call to compute(). | 
|  | * | 
|  | * \warning this class stores a reference to the matrix A as well as some | 
|  | * precomputed values that depend on it. Therefore, if \a A is changed | 
|  | * this class becomes invalid. Call compute() to update it with the new | 
|  | * matrix A, or modify a copy of A. | 
|  | */ | 
|  | template<typename MatrixDerived> | 
|  | explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} | 
|  |  | 
|  | ~LeastSquaresConjugateGradient() {} | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const | 
|  | { | 
|  | m_iterations = Base::maxIterations(); | 
|  | m_error = Base::m_tolerance; | 
|  |  | 
|  | internal::least_square_conjugate_gradient(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error); | 
|  | m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |