|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_PASTIXSUPPORT_H | 
|  | #define EIGEN_PASTIXSUPPORT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | #if defined(DCOMPLEX) | 
|  | #define PASTIX_COMPLEX  COMPLEX | 
|  | #define PASTIX_DCOMPLEX DCOMPLEX | 
|  | #else | 
|  | #define PASTIX_COMPLEX  std::complex<float> | 
|  | #define PASTIX_DCOMPLEX std::complex<double> | 
|  | #endif | 
|  |  | 
|  | /** \ingroup PaStiXSupport_Module | 
|  | * \brief Interface to the PaStix solver | 
|  | * | 
|  | * This class is used to solve the linear systems A.X = B via the PaStix library. | 
|  | * The matrix can be either real or complex, symmetric or not. | 
|  | * | 
|  | * \sa TutorialSparseDirectSolvers | 
|  | */ | 
|  | template<typename MatrixType_, bool IsStrSym = false> class PastixLU; | 
|  | template<typename MatrixType_, int Options> class PastixLLT; | 
|  | template<typename MatrixType_, int Options> class PastixLDLT; | 
|  |  | 
|  | namespace internal | 
|  | { | 
|  |  | 
|  | template<class Pastix> struct pastix_traits; | 
|  |  | 
|  | template<typename MatrixType_> | 
|  | struct pastix_traits< PastixLU<MatrixType_> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType_::Scalar Scalar; | 
|  | typedef typename MatrixType_::RealScalar RealScalar; | 
|  | typedef typename MatrixType_::StorageIndex StorageIndex; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType_, int Options> | 
|  | struct pastix_traits< PastixLLT<MatrixType_,Options> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType_::Scalar Scalar; | 
|  | typedef typename MatrixType_::RealScalar RealScalar; | 
|  | typedef typename MatrixType_::StorageIndex StorageIndex; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType_, int Options> | 
|  | struct pastix_traits< PastixLDLT<MatrixType_,Options> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType_::Scalar Scalar; | 
|  | typedef typename MatrixType_::RealScalar RealScalar; | 
|  | typedef typename MatrixType_::StorageIndex StorageIndex; | 
|  | }; | 
|  |  | 
|  | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm) | 
|  | { | 
|  | if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
|  | if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
|  | s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); | 
|  | } | 
|  |  | 
|  | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm) | 
|  | { | 
|  | if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
|  | if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
|  | d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); | 
|  | } | 
|  |  | 
|  | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm) | 
|  | { | 
|  | if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
|  | if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
|  | c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm); | 
|  | } | 
|  |  | 
|  | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm) | 
|  | { | 
|  | if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
|  | if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
|  | z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm); | 
|  | } | 
|  |  | 
|  | // Convert the matrix  to Fortran-style Numbering | 
|  | template <typename MatrixType> | 
|  | void c_to_fortran_numbering (MatrixType& mat) | 
|  | { | 
|  | if ( !(mat.outerIndexPtr()[0]) ) | 
|  | { | 
|  | int i; | 
|  | for(i = 0; i <= mat.rows(); ++i) | 
|  | ++mat.outerIndexPtr()[i]; | 
|  | for(i = 0; i < mat.nonZeros(); ++i) | 
|  | ++mat.innerIndexPtr()[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert to C-style Numbering | 
|  | template <typename MatrixType> | 
|  | void fortran_to_c_numbering (MatrixType& mat) | 
|  | { | 
|  | // Check the Numbering | 
|  | if ( mat.outerIndexPtr()[0] == 1 ) | 
|  | { // Convert to C-style numbering | 
|  | int i; | 
|  | for(i = 0; i <= mat.rows(); ++i) | 
|  | --mat.outerIndexPtr()[i]; | 
|  | for(i = 0; i < mat.nonZeros(); ++i) | 
|  | --mat.innerIndexPtr()[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is the base class to interface with PaStiX functions. | 
|  | // Users should not used this class directly. | 
|  | template <class Derived> | 
|  | class PastixBase : public SparseSolverBase<Derived> | 
|  | { | 
|  | protected: | 
|  | typedef SparseSolverBase<Derived> Base; | 
|  | using Base::derived; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  |  | 
|  | typedef typename internal::pastix_traits<Derived>::MatrixType MatrixType_; | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef Matrix<Scalar,Dynamic,1> Vector; | 
|  | typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix; | 
|  | enum { | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | public: | 
|  |  | 
|  | PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0) | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | ~PastixBase() | 
|  | { | 
|  | clean(); | 
|  | } | 
|  |  | 
|  | template<typename Rhs,typename Dest> | 
|  | bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const; | 
|  |  | 
|  | /** Returns a reference to the integer vector IPARM of PaStiX parameters | 
|  | * to modify the default parameters. | 
|  | * The statistics related to the different phases of factorization and solve are saved here as well | 
|  | * \sa analyzePattern() factorize() | 
|  | */ | 
|  | Array<StorageIndex,IPARM_SIZE,1>& iparm() | 
|  | { | 
|  | return m_iparm; | 
|  | } | 
|  |  | 
|  | /** Return a reference to a particular index parameter of the IPARM vector | 
|  | * \sa iparm() | 
|  | */ | 
|  |  | 
|  | int& iparm(int idxparam) | 
|  | { | 
|  | return m_iparm(idxparam); | 
|  | } | 
|  |  | 
|  | /** Returns a reference to the double vector DPARM of PaStiX parameters | 
|  | * The statistics related to the different phases of factorization and solve are saved here as well | 
|  | * \sa analyzePattern() factorize() | 
|  | */ | 
|  | Array<double,DPARM_SIZE,1>& dparm() | 
|  | { | 
|  | return m_dparm; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** Return a reference to a particular index parameter of the DPARM vector | 
|  | * \sa dparm() | 
|  | */ | 
|  | double& dparm(int idxparam) | 
|  | { | 
|  | return m_dparm(idxparam); | 
|  | } | 
|  |  | 
|  | inline Index cols() const { return m_size; } | 
|  | inline Index rows() const { return m_size; } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the PaStiX reports a problem | 
|  | *          \c InvalidInput if the input matrix is invalid | 
|  | * | 
|  | * \sa iparm() | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | // Initialize the Pastix data structure, check the matrix | 
|  | void init(); | 
|  |  | 
|  | // Compute the ordering and the symbolic factorization | 
|  | void analyzePattern(ColSpMatrix& mat); | 
|  |  | 
|  | // Compute the numerical factorization | 
|  | void factorize(ColSpMatrix& mat); | 
|  |  | 
|  | // Free all the data allocated by Pastix | 
|  | void clean() | 
|  | { | 
|  | eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); | 
|  | m_iparm(IPARM_START_TASK) = API_TASK_CLEAN; | 
|  | m_iparm(IPARM_END_TASK) = API_TASK_CLEAN; | 
|  | internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, | 
|  | m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
|  | } | 
|  |  | 
|  | void compute(ColSpMatrix& mat); | 
|  |  | 
|  | int m_initisOk; | 
|  | int m_analysisIsOk; | 
|  | int m_factorizationIsOk; | 
|  | mutable ComputationInfo m_info; | 
|  | mutable pastix_data_t *m_pastixdata; // Data structure for pastix | 
|  | mutable int m_comm; // The MPI communicator identifier | 
|  | mutable Array<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters | 
|  | mutable Array<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters | 
|  | mutable Matrix<StorageIndex,Dynamic,1> m_perm;  // Permutation vector | 
|  | mutable Matrix<StorageIndex,Dynamic,1> m_invp;  // Inverse permutation vector | 
|  | mutable int m_size; // Size of the matrix | 
|  | }; | 
|  |  | 
|  | /** Initialize the PaStiX data structure. | 
|  | *A first call to this function fills iparm and dparm with the default PaStiX parameters | 
|  | * \sa iparm() dparm() | 
|  | */ | 
|  | template <class Derived> | 
|  | void PastixBase<Derived>::init() | 
|  | { | 
|  | m_size = 0; | 
|  | m_iparm.setZero(IPARM_SIZE); | 
|  | m_dparm.setZero(DPARM_SIZE); | 
|  |  | 
|  | m_iparm(IPARM_MODIFY_PARAMETER) = API_NO; | 
|  | pastix(&m_pastixdata, MPI_COMM_WORLD, | 
|  | 0, 0, 0, 0, | 
|  | 0, 0, 0, 1, m_iparm.data(), m_dparm.data()); | 
|  |  | 
|  | m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO; | 
|  | m_iparm[IPARM_VERBOSE]             = API_VERBOSE_NOT; | 
|  | m_iparm[IPARM_ORDERING]            = API_ORDER_SCOTCH; | 
|  | m_iparm[IPARM_INCOMPLETE]          = API_NO; | 
|  | m_iparm[IPARM_OOC_LIMIT]           = 2000; | 
|  | m_iparm[IPARM_RHS_MAKING]          = API_RHS_B; | 
|  | m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; | 
|  |  | 
|  | m_iparm(IPARM_START_TASK) = API_TASK_INIT; | 
|  | m_iparm(IPARM_END_TASK) = API_TASK_INIT; | 
|  | internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, | 
|  | 0, 0, 0, 0, m_iparm.data(), m_dparm.data()); | 
|  |  | 
|  | // Check the returned error | 
|  | if(m_iparm(IPARM_ERROR_NUMBER)) { | 
|  | m_info = InvalidInput; | 
|  | m_initisOk = false; | 
|  | } | 
|  | else { | 
|  | m_info = Success; | 
|  | m_initisOk = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class Derived> | 
|  | void PastixBase<Derived>::compute(ColSpMatrix& mat) | 
|  | { | 
|  | eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); | 
|  |  | 
|  | analyzePattern(mat); | 
|  | factorize(mat); | 
|  |  | 
|  | m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; | 
|  | } | 
|  |  | 
|  |  | 
|  | template <class Derived> | 
|  | void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat) | 
|  | { | 
|  | eigen_assert(m_initisOk && "The initialization of PaSTiX failed"); | 
|  |  | 
|  | // clean previous calls | 
|  | if(m_size>0) | 
|  | clean(); | 
|  |  | 
|  | m_size = internal::convert_index<int>(mat.rows()); | 
|  | m_perm.resize(m_size); | 
|  | m_invp.resize(m_size); | 
|  |  | 
|  | m_iparm(IPARM_START_TASK) = API_TASK_ORDERING; | 
|  | m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE; | 
|  | internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), | 
|  | mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
|  |  | 
|  | // Check the returned error | 
|  | if(m_iparm(IPARM_ERROR_NUMBER)) | 
|  | { | 
|  | m_info = NumericalIssue; | 
|  | m_analysisIsOk = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | m_info = Success; | 
|  | m_analysisIsOk = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class Derived> | 
|  | void PastixBase<Derived>::factorize(ColSpMatrix& mat) | 
|  | { | 
|  | //   if(&m_cpyMat != &mat) m_cpyMat = mat; | 
|  | eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase"); | 
|  | m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT; | 
|  | m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT; | 
|  | m_size = internal::convert_index<int>(mat.rows()); | 
|  |  | 
|  | internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), | 
|  | mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
|  |  | 
|  | // Check the returned error | 
|  | if(m_iparm(IPARM_ERROR_NUMBER)) | 
|  | { | 
|  | m_info = NumericalIssue; | 
|  | m_factorizationIsOk = false; | 
|  | m_isInitialized = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | m_info = Success; | 
|  | m_factorizationIsOk = true; | 
|  | m_isInitialized = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Solve the system */ | 
|  | template<typename Base> | 
|  | template<typename Rhs,typename Dest> | 
|  | bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "The matrix should be factorized first"); | 
|  | EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, | 
|  | THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
|  | int rhs = 1; | 
|  |  | 
|  | x = b; /* on return, x is overwritten by the computed solution */ | 
|  |  | 
|  | for (int i = 0; i < b.cols(); i++){ | 
|  | m_iparm[IPARM_START_TASK]          = API_TASK_SOLVE; | 
|  | m_iparm[IPARM_END_TASK]            = API_TASK_REFINE; | 
|  |  | 
|  | internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0, | 
|  | m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data()); | 
|  | } | 
|  |  | 
|  | // Check the returned error | 
|  | m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue; | 
|  |  | 
|  | return m_iparm(IPARM_ERROR_NUMBER)==0; | 
|  | } | 
|  |  | 
|  | /** \ingroup PaStiXSupport_Module | 
|  | * \class PastixLU | 
|  | * \brief Sparse direct LU solver based on PaStiX library | 
|  | * | 
|  | * This class is used to solve the linear systems A.X = B with a supernodal LU | 
|  | * factorization in the PaStiX library. The matrix A should be squared and nonsingular | 
|  | * PaStiX requires that the matrix A has a symmetric structural pattern. | 
|  | * This interface can symmetrize the input matrix otherwise. | 
|  | * The vectors or matrices X and B can be either dense or sparse. | 
|  | * | 
|  | * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false | 
|  | * NOTE : Note that if the analysis and factorization phase are called separately, | 
|  | * the input matrix will be symmetrized at each call, hence it is advised to | 
|  | * symmetrize the matrix in a end-user program and set \p IsStrSym to true | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
|  | * | 
|  | */ | 
|  | template<typename MatrixType_, bool IsStrSym> | 
|  | class PastixLU : public PastixBase< PastixLU<MatrixType_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef PastixBase<PastixLU<MatrixType> > Base; | 
|  | typedef typename Base::ColSpMatrix ColSpMatrix; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  |  | 
|  | public: | 
|  | PastixLU() : Base() | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | explicit PastixLU(const MatrixType& matrix):Base() | 
|  | { | 
|  | init(); | 
|  | compute(matrix); | 
|  | } | 
|  | /** Compute the LU supernodal factorization of \p matrix. | 
|  | * iparm and dparm can be used to tune the PaStiX parameters. | 
|  | * see the PaStiX user's manual | 
|  | * \sa analyzePattern() factorize() | 
|  | */ | 
|  | void compute (const MatrixType& matrix) | 
|  | { | 
|  | m_structureIsUptodate = false; | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::compute(temp); | 
|  | } | 
|  | /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. | 
|  | * Several ordering methods can be used at this step. See the PaStiX user's manual. | 
|  | * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& matrix) | 
|  | { | 
|  | m_structureIsUptodate = false; | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::analyzePattern(temp); | 
|  | } | 
|  |  | 
|  | /** Compute the LU supernodal factorization of \p matrix | 
|  | * WARNING The matrix \p matrix should have the same structural pattern | 
|  | * as the same used in the analysis phase. | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::factorize(temp); | 
|  | } | 
|  | protected: | 
|  |  | 
|  | void init() | 
|  | { | 
|  | m_structureIsUptodate = false; | 
|  | m_iparm(IPARM_SYM) = API_SYM_NO; | 
|  | m_iparm(IPARM_FACTORIZATION) = API_FACT_LU; | 
|  | } | 
|  |  | 
|  | void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) | 
|  | { | 
|  | if(IsStrSym) | 
|  | out = matrix; | 
|  | else | 
|  | { | 
|  | if(!m_structureIsUptodate) | 
|  | { | 
|  | // update the transposed structure | 
|  | m_transposedStructure = matrix.transpose(); | 
|  |  | 
|  | // Set the elements of the matrix to zero | 
|  | for (Index j=0; j<m_transposedStructure.outerSize(); ++j) | 
|  | for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it) | 
|  | it.valueRef() = 0.0; | 
|  |  | 
|  | m_structureIsUptodate = true; | 
|  | } | 
|  |  | 
|  | out = m_transposedStructure + matrix; | 
|  | } | 
|  | internal::c_to_fortran_numbering(out); | 
|  | } | 
|  |  | 
|  | using Base::m_iparm; | 
|  | using Base::m_dparm; | 
|  |  | 
|  | ColSpMatrix m_transposedStructure; | 
|  | bool m_structureIsUptodate; | 
|  | }; | 
|  |  | 
|  | /** \ingroup PaStiXSupport_Module | 
|  | * \class PastixLLT | 
|  | * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library | 
|  | * | 
|  | * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization | 
|  | * available in the PaStiX library. The matrix A should be symmetric and positive definite | 
|  | * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX | 
|  | * The vectors or matrices X and B can be either dense or sparse | 
|  | * | 
|  | * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_> | 
|  | class PastixLLT : public PastixBase< PastixLLT<MatrixType_, UpLo_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef PastixBase<PastixLLT<MatrixType, UpLo_> > Base; | 
|  | typedef typename Base::ColSpMatrix ColSpMatrix; | 
|  |  | 
|  | public: | 
|  | enum { UpLo = UpLo_ }; | 
|  | PastixLLT() : Base() | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | explicit PastixLLT(const MatrixType& matrix):Base() | 
|  | { | 
|  | init(); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** Compute the L factor of the LL^T supernodal factorization of \p matrix | 
|  | * \sa analyzePattern() factorize() | 
|  | */ | 
|  | void compute (const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::compute(temp); | 
|  | } | 
|  |  | 
|  | /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern | 
|  | * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::analyzePattern(temp); | 
|  | } | 
|  | /** Compute the LL^T supernodal numerical factorization of \p matrix | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::factorize(temp); | 
|  | } | 
|  | protected: | 
|  | using Base::m_iparm; | 
|  |  | 
|  | void init() | 
|  | { | 
|  | m_iparm(IPARM_SYM) = API_SYM_YES; | 
|  | m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT; | 
|  | } | 
|  |  | 
|  | void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) | 
|  | { | 
|  | out.resize(matrix.rows(), matrix.cols()); | 
|  | // Pastix supports only lower, column-major matrices | 
|  | out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); | 
|  | internal::c_to_fortran_numbering(out); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup PaStiXSupport_Module | 
|  | * \class PastixLDLT | 
|  | * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library | 
|  | * | 
|  | * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization | 
|  | * available in the PaStiX library. The matrix A should be symmetric and positive definite | 
|  | * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX | 
|  | * The vectors or matrices X and B can be either dense or sparse | 
|  | * | 
|  | * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_> | 
|  | class PastixLDLT : public PastixBase< PastixLDLT<MatrixType_, UpLo_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef PastixBase<PastixLDLT<MatrixType, UpLo_> > Base; | 
|  | typedef typename Base::ColSpMatrix ColSpMatrix; | 
|  |  | 
|  | public: | 
|  | enum { UpLo = UpLo_ }; | 
|  | PastixLDLT():Base() | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | explicit PastixLDLT(const MatrixType& matrix):Base() | 
|  | { | 
|  | init(); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** Compute the L and D factors of the LDL^T factorization of \p matrix | 
|  | * \sa analyzePattern() factorize() | 
|  | */ | 
|  | void compute (const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::compute(temp); | 
|  | } | 
|  |  | 
|  | /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern | 
|  | * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::analyzePattern(temp); | 
|  | } | 
|  | /** Compute the LDL^T supernodal numerical factorization of \p matrix | 
|  | * | 
|  | */ | 
|  | void factorize(const MatrixType& matrix) | 
|  | { | 
|  | ColSpMatrix temp; | 
|  | grabMatrix(matrix, temp); | 
|  | Base::factorize(temp); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | using Base::m_iparm; | 
|  |  | 
|  | void init() | 
|  | { | 
|  | m_iparm(IPARM_SYM) = API_SYM_YES; | 
|  | m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT; | 
|  | } | 
|  |  | 
|  | void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) | 
|  | { | 
|  | // Pastix supports only lower, column-major matrices | 
|  | out.resize(matrix.rows(), matrix.cols()); | 
|  | out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); | 
|  | internal::c_to_fortran_numbering(out); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif |