| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_PASTIXSUPPORT_H | 
 | #define EIGEN_PASTIXSUPPORT_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | #if defined(DCOMPLEX) | 
 |   #define PASTIX_COMPLEX  COMPLEX | 
 |   #define PASTIX_DCOMPLEX DCOMPLEX | 
 | #else | 
 |   #define PASTIX_COMPLEX  std::complex<float> | 
 |   #define PASTIX_DCOMPLEX std::complex<double> | 
 | #endif | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |   * \brief Interface to the PaStix solver | 
 |   *  | 
 |   * This class is used to solve the linear systems A.X = B via the PaStix library.  | 
 |   * The matrix can be either real or complex, symmetric or not. | 
 |   * | 
 |   * \sa TutorialSparseDirectSolvers | 
 |   */ | 
 | template<typename MatrixType_, bool IsStrSym = false> class PastixLU; | 
 | template<typename MatrixType_, int Options> class PastixLLT; | 
 | template<typename MatrixType_, int Options> class PastixLDLT; | 
 |  | 
 | namespace internal | 
 | { | 
 |      | 
 |   template<class Pastix> struct pastix_traits; | 
 |  | 
 |   template<typename MatrixType_> | 
 |   struct pastix_traits< PastixLU<MatrixType_> > | 
 |   { | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef typename MatrixType_::Scalar Scalar; | 
 |     typedef typename MatrixType_::RealScalar RealScalar; | 
 |     typedef typename MatrixType_::StorageIndex StorageIndex; | 
 |   }; | 
 |  | 
 |   template<typename MatrixType_, int Options> | 
 |   struct pastix_traits< PastixLLT<MatrixType_,Options> > | 
 |   { | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef typename MatrixType_::Scalar Scalar; | 
 |     typedef typename MatrixType_::RealScalar RealScalar; | 
 |     typedef typename MatrixType_::StorageIndex StorageIndex; | 
 |   }; | 
 |  | 
 |   template<typename MatrixType_, int Options> | 
 |   struct pastix_traits< PastixLDLT<MatrixType_,Options> > | 
 |   { | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef typename MatrixType_::Scalar Scalar; | 
 |     typedef typename MatrixType_::RealScalar RealScalar; | 
 |     typedef typename MatrixType_::StorageIndex StorageIndex; | 
 |   }; | 
 |    | 
 |   inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm) | 
 |   { | 
 |     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
 |     if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
 |     s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);  | 
 |   } | 
 |    | 
 |   inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm) | 
 |   { | 
 |     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
 |     if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
 |     d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);  | 
 |   } | 
 |    | 
 |   inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm) | 
 |   { | 
 |     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
 |     if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
 |     c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);  | 
 |   } | 
 |    | 
 |   inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm) | 
 |   { | 
 |     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } | 
 |     if (nbrhs == 0) {x = NULL; nbrhs=1;} | 
 |     z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm);  | 
 |   } | 
 |  | 
 |   // Convert the matrix  to Fortran-style Numbering | 
 |   template <typename MatrixType> | 
 |   void c_to_fortran_numbering (MatrixType& mat) | 
 |   { | 
 |     if ( !(mat.outerIndexPtr()[0]) )  | 
 |     {  | 
 |       int i; | 
 |       for(i = 0; i <= mat.rows(); ++i) | 
 |         ++mat.outerIndexPtr()[i]; | 
 |       for(i = 0; i < mat.nonZeros(); ++i) | 
 |         ++mat.innerIndexPtr()[i]; | 
 |     } | 
 |   } | 
 |    | 
 |   // Convert to C-style Numbering | 
 |   template <typename MatrixType> | 
 |   void fortran_to_c_numbering (MatrixType& mat) | 
 |   { | 
 |     // Check the Numbering | 
 |     if ( mat.outerIndexPtr()[0] == 1 )  | 
 |     { // Convert to C-style numbering | 
 |       int i; | 
 |       for(i = 0; i <= mat.rows(); ++i) | 
 |         --mat.outerIndexPtr()[i]; | 
 |       for(i = 0; i < mat.nonZeros(); ++i) | 
 |         --mat.innerIndexPtr()[i]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // This is the base class to interface with PaStiX functions.  | 
 | // Users should not used this class directly.  | 
 | template <class Derived> | 
 | class PastixBase : public SparseSolverBase<Derived> | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<Derived> Base; | 
 |     using Base::derived; | 
 |     using Base::m_isInitialized; | 
 |   public: | 
 |     using Base::_solve_impl; | 
 |      | 
 |     typedef typename internal::pastix_traits<Derived>::MatrixType MatrixType_; | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef Matrix<Scalar,Dynamic,1> Vector; | 
 |     typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix; | 
 |     enum { | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |      | 
 |   public: | 
 |      | 
 |     PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0) | 
 |     { | 
 |       init(); | 
 |     } | 
 |      | 
 |     ~PastixBase()  | 
 |     { | 
 |       clean(); | 
 |     } | 
 |      | 
 |     template<typename Rhs,typename Dest> | 
 |     bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const; | 
 |      | 
 |     /** Returns a reference to the integer vector IPARM of PaStiX parameters | 
 |       * to modify the default parameters.  | 
 |       * The statistics related to the different phases of factorization and solve are saved here as well | 
 |       * \sa analyzePattern() factorize() | 
 |       */ | 
 |     Array<StorageIndex,IPARM_SIZE,1>& iparm() | 
 |     { | 
 |       return m_iparm;  | 
 |     } | 
 |      | 
 |     /** Return a reference to a particular index parameter of the IPARM vector  | 
 |      * \sa iparm() | 
 |      */ | 
 |      | 
 |     int& iparm(int idxparam) | 
 |     { | 
 |       return m_iparm(idxparam); | 
 |     } | 
 |      | 
 |      /** Returns a reference to the double vector DPARM of PaStiX parameters  | 
 |       * The statistics related to the different phases of factorization and solve are saved here as well | 
 |       * \sa analyzePattern() factorize() | 
 |       */ | 
 |     Array<double,DPARM_SIZE,1>& dparm() | 
 |     { | 
 |       return m_dparm;  | 
 |     } | 
 |      | 
 |      | 
 |     /** Return a reference to a particular index parameter of the DPARM vector  | 
 |      * \sa dparm() | 
 |      */ | 
 |     double& dparm(int idxparam) | 
 |     { | 
 |       return m_dparm(idxparam); | 
 |     } | 
 |      | 
 |     inline Index cols() const { return m_size; } | 
 |     inline Index rows() const { return m_size; } | 
 |      | 
 |      /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the PaStiX reports a problem | 
 |       *          \c InvalidInput if the input matrix is invalid | 
 |       * | 
 |       * \sa iparm()           | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |      | 
 |   protected: | 
 |  | 
 |     // Initialize the Pastix data structure, check the matrix | 
 |     void init();  | 
 |      | 
 |     // Compute the ordering and the symbolic factorization | 
 |     void analyzePattern(ColSpMatrix& mat); | 
 |      | 
 |     // Compute the numerical factorization | 
 |     void factorize(ColSpMatrix& mat); | 
 |      | 
 |     // Free all the data allocated by Pastix | 
 |     void clean() | 
 |     { | 
 |       eigen_assert(m_initisOk && "The Pastix structure should be allocated first");  | 
 |       m_iparm(IPARM_START_TASK) = API_TASK_CLEAN; | 
 |       m_iparm(IPARM_END_TASK) = API_TASK_CLEAN; | 
 |       internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, | 
 |                              m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
 |     } | 
 |      | 
 |     void compute(ColSpMatrix& mat); | 
 |      | 
 |     int m_initisOk;  | 
 |     int m_analysisIsOk; | 
 |     int m_factorizationIsOk; | 
 |     mutable ComputationInfo m_info;  | 
 |     mutable pastix_data_t *m_pastixdata; // Data structure for pastix | 
 |     mutable int m_comm; // The MPI communicator identifier | 
 |     mutable Array<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters | 
 |     mutable Array<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters | 
 |     mutable Matrix<StorageIndex,Dynamic,1> m_perm;  // Permutation vector | 
 |     mutable Matrix<StorageIndex,Dynamic,1> m_invp;  // Inverse permutation vector | 
 |     mutable int m_size; // Size of the matrix  | 
 | };  | 
 |  | 
 |  /** Initialize the PaStiX data structure.  | 
 |    *A first call to this function fills iparm and dparm with the default PaStiX parameters | 
 |    * \sa iparm() dparm() | 
 |    */ | 
 | template <class Derived> | 
 | void PastixBase<Derived>::init() | 
 | { | 
 |   m_size = 0;  | 
 |   m_iparm.setZero(IPARM_SIZE); | 
 |   m_dparm.setZero(DPARM_SIZE); | 
 |    | 
 |   m_iparm(IPARM_MODIFY_PARAMETER) = API_NO; | 
 |   pastix(&m_pastixdata, MPI_COMM_WORLD, | 
 |          0, 0, 0, 0, | 
 |          0, 0, 0, 1, m_iparm.data(), m_dparm.data()); | 
 |    | 
 |   m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO; | 
 |   m_iparm[IPARM_VERBOSE]             = API_VERBOSE_NOT; | 
 |   m_iparm[IPARM_ORDERING]            = API_ORDER_SCOTCH; | 
 |   m_iparm[IPARM_INCOMPLETE]          = API_NO; | 
 |   m_iparm[IPARM_OOC_LIMIT]           = 2000; | 
 |   m_iparm[IPARM_RHS_MAKING]          = API_RHS_B; | 
 |   m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; | 
 |    | 
 |   m_iparm(IPARM_START_TASK) = API_TASK_INIT; | 
 |   m_iparm(IPARM_END_TASK) = API_TASK_INIT; | 
 |   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, | 
 |                          0, 0, 0, 0, m_iparm.data(), m_dparm.data()); | 
 |    | 
 |   // Check the returned error | 
 |   if(m_iparm(IPARM_ERROR_NUMBER)) { | 
 |     m_info = InvalidInput; | 
 |     m_initisOk = false; | 
 |   } | 
 |   else {  | 
 |     m_info = Success; | 
 |     m_initisOk = true; | 
 |   } | 
 | } | 
 |  | 
 | template <class Derived> | 
 | void PastixBase<Derived>::compute(ColSpMatrix& mat) | 
 | { | 
 |   eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); | 
 |    | 
 |   analyzePattern(mat);   | 
 |   factorize(mat); | 
 |    | 
 |   m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; | 
 | } | 
 |  | 
 |  | 
 | template <class Derived> | 
 | void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat) | 
 | {                          | 
 |   eigen_assert(m_initisOk && "The initialization of PaSTiX failed"); | 
 |    | 
 |   // clean previous calls | 
 |   if(m_size>0) | 
 |     clean(); | 
 |    | 
 |   m_size = internal::convert_index<int>(mat.rows()); | 
 |   m_perm.resize(m_size); | 
 |   m_invp.resize(m_size); | 
 |    | 
 |   m_iparm(IPARM_START_TASK) = API_TASK_ORDERING; | 
 |   m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE; | 
 |   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), | 
 |                mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
 |    | 
 |   // Check the returned error | 
 |   if(m_iparm(IPARM_ERROR_NUMBER)) | 
 |   { | 
 |     m_info = NumericalIssue; | 
 |     m_analysisIsOk = false; | 
 |   } | 
 |   else | 
 |   {  | 
 |     m_info = Success; | 
 |     m_analysisIsOk = true; | 
 |   } | 
 | } | 
 |  | 
 | template <class Derived> | 
 | void PastixBase<Derived>::factorize(ColSpMatrix& mat) | 
 | { | 
 | //   if(&m_cpyMat != &mat) m_cpyMat = mat; | 
 |   eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase"); | 
 |   m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT; | 
 |   m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT; | 
 |   m_size = internal::convert_index<int>(mat.rows()); | 
 |    | 
 |   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), | 
 |                mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
 |    | 
 |   // Check the returned error | 
 |   if(m_iparm(IPARM_ERROR_NUMBER)) | 
 |   { | 
 |     m_info = NumericalIssue; | 
 |     m_factorizationIsOk = false; | 
 |     m_isInitialized = false; | 
 |   } | 
 |   else | 
 |   { | 
 |     m_info = Success; | 
 |     m_factorizationIsOk = true; | 
 |     m_isInitialized = true; | 
 |   } | 
 | } | 
 |  | 
 | /* Solve the system */ | 
 | template<typename Base> | 
 | template<typename Rhs,typename Dest> | 
 | bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const | 
 | { | 
 |   eigen_assert(m_isInitialized && "The matrix should be factorized first"); | 
 |   EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, | 
 |                      THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
 |   int rhs = 1; | 
 |    | 
 |   x = b; /* on return, x is overwritten by the computed solution */ | 
 |    | 
 |   for (int i = 0; i < b.cols(); i++){ | 
 |     m_iparm[IPARM_START_TASK]          = API_TASK_SOLVE; | 
 |     m_iparm[IPARM_END_TASK]            = API_TASK_REFINE; | 
 |    | 
 |     internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0, | 
 |                            m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data()); | 
 |   } | 
 |    | 
 |   // Check the returned error | 
 |   m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue; | 
 |    | 
 |   return m_iparm(IPARM_ERROR_NUMBER)==0; | 
 | } | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |   * \class PastixLU | 
 |   * \brief Sparse direct LU solver based on PaStiX library | 
 |   *  | 
 |   * This class is used to solve the linear systems A.X = B with a supernodal LU  | 
 |   * factorization in the PaStiX library. The matrix A should be squared and nonsingular | 
 |   * PaStiX requires that the matrix A has a symmetric structural pattern.  | 
 |   * This interface can symmetrize the input matrix otherwise.  | 
 |   * The vectors or matrices X and B can be either dense or sparse. | 
 |   *  | 
 |   * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false | 
 |   * NOTE : Note that if the analysis and factorization phase are called separately,  | 
 |   * the input matrix will be symmetrized at each call, hence it is advised to  | 
 |   * symmetrize the matrix in a end-user program and set \p IsStrSym to true | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
 |   *  | 
 |   */ | 
 | template<typename MatrixType_, bool IsStrSym> | 
 | class PastixLU : public PastixBase< PastixLU<MatrixType_> > | 
 | { | 
 |   public: | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef PastixBase<PastixLU<MatrixType> > Base; | 
 |     typedef typename Base::ColSpMatrix ColSpMatrix; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |      | 
 |   public: | 
 |     PastixLU() : Base() | 
 |     { | 
 |       init(); | 
 |     } | 
 |      | 
 |     explicit PastixLU(const MatrixType& matrix):Base() | 
 |     { | 
 |       init(); | 
 |       compute(matrix); | 
 |     } | 
 |     /** Compute the LU supernodal factorization of \p matrix.  | 
 |       * iparm and dparm can be used to tune the PaStiX parameters.  | 
 |       * see the PaStiX user's manual | 
 |       * \sa analyzePattern() factorize() | 
 |       */ | 
 |     void compute (const MatrixType& matrix) | 
 |     { | 
 |       m_structureIsUptodate = false; | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::compute(temp); | 
 |     } | 
 |     /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.  | 
 |       * Several ordering methods can be used at this step. See the PaStiX user's manual.  | 
 |       * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& matrix) | 
 |     { | 
 |       m_structureIsUptodate = false; | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::analyzePattern(temp); | 
 |     } | 
 |  | 
 |     /** Compute the LU supernodal factorization of \p matrix | 
 |       * WARNING The matrix \p matrix should have the same structural pattern  | 
 |       * as the same used in the analysis phase. | 
 |       * \sa analyzePattern() | 
 |       */  | 
 |     void factorize(const MatrixType& matrix) | 
 |     { | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::factorize(temp); | 
 |     } | 
 |   protected: | 
 |      | 
 |     void init() | 
 |     { | 
 |       m_structureIsUptodate = false; | 
 |       m_iparm(IPARM_SYM) = API_SYM_NO; | 
 |       m_iparm(IPARM_FACTORIZATION) = API_FACT_LU; | 
 |     } | 
 |      | 
 |     void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) | 
 |     { | 
 |       if(IsStrSym) | 
 |         out = matrix; | 
 |       else | 
 |       { | 
 |         if(!m_structureIsUptodate) | 
 |         { | 
 |           // update the transposed structure | 
 |           m_transposedStructure = matrix.transpose(); | 
 |            | 
 |           // Set the elements of the matrix to zero  | 
 |           for (Index j=0; j<m_transposedStructure.outerSize(); ++j)  | 
 |             for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it) | 
 |               it.valueRef() = 0.0; | 
 |  | 
 |           m_structureIsUptodate = true; | 
 |         } | 
 |          | 
 |         out = m_transposedStructure + matrix; | 
 |       } | 
 |       internal::c_to_fortran_numbering(out); | 
 |     } | 
 |      | 
 |     using Base::m_iparm; | 
 |     using Base::m_dparm; | 
 |      | 
 |     ColSpMatrix m_transposedStructure; | 
 |     bool m_structureIsUptodate; | 
 | }; | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |   * \class PastixLLT | 
 |   * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library | 
 |   *  | 
 |   * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization | 
 |   * available in the PaStiX library. The matrix A should be symmetric and positive definite | 
 |   * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX | 
 |   * The vectors or matrices X and B can be either dense or sparse | 
 |   *  | 
 |   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_> | 
 | class PastixLLT : public PastixBase< PastixLLT<MatrixType_, UpLo_> > | 
 | { | 
 |   public: | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef PastixBase<PastixLLT<MatrixType, UpLo_> > Base; | 
 |     typedef typename Base::ColSpMatrix ColSpMatrix; | 
 |      | 
 |   public: | 
 |     enum { UpLo = UpLo_ }; | 
 |     PastixLLT() : Base() | 
 |     { | 
 |       init(); | 
 |     } | 
 |      | 
 |     explicit PastixLLT(const MatrixType& matrix):Base() | 
 |     { | 
 |       init(); | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     /** Compute the L factor of the LL^T supernodal factorization of \p matrix  | 
 |       * \sa analyzePattern() factorize() | 
 |       */ | 
 |     void compute (const MatrixType& matrix) | 
 |     { | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::compute(temp); | 
 |     } | 
 |  | 
 |      /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern | 
 |       * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& matrix) | 
 |     { | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::analyzePattern(temp); | 
 |     } | 
 |       /** Compute the LL^T supernodal numerical factorization of \p matrix  | 
 |         * \sa analyzePattern() | 
 |         */ | 
 |     void factorize(const MatrixType& matrix) | 
 |     { | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::factorize(temp); | 
 |     } | 
 |   protected: | 
 |     using Base::m_iparm; | 
 |      | 
 |     void init() | 
 |     { | 
 |       m_iparm(IPARM_SYM) = API_SYM_YES; | 
 |       m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT; | 
 |     } | 
 |      | 
 |     void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) | 
 |     { | 
 |       out.resize(matrix.rows(), matrix.cols()); | 
 |       // Pastix supports only lower, column-major matrices  | 
 |       out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); | 
 |       internal::c_to_fortran_numbering(out); | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |   * \class PastixLDLT | 
 |   * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library | 
 |   *  | 
 |   * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization | 
 |   * available in the PaStiX library. The matrix A should be symmetric and positive definite | 
 |   * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX | 
 |   * The vectors or matrices X and B can be either dense or sparse | 
 |   *  | 
 |   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_> | 
 | class PastixLDLT : public PastixBase< PastixLDLT<MatrixType_, UpLo_> > | 
 | { | 
 |   public: | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef PastixBase<PastixLDLT<MatrixType, UpLo_> > Base; | 
 |     typedef typename Base::ColSpMatrix ColSpMatrix; | 
 |      | 
 |   public: | 
 |     enum { UpLo = UpLo_ }; | 
 |     PastixLDLT():Base() | 
 |     { | 
 |       init(); | 
 |     } | 
 |      | 
 |     explicit PastixLDLT(const MatrixType& matrix):Base() | 
 |     { | 
 |       init(); | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     /** Compute the L and D factors of the LDL^T factorization of \p matrix  | 
 |       * \sa analyzePattern() factorize() | 
 |       */ | 
 |     void compute (const MatrixType& matrix) | 
 |     { | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::compute(temp); | 
 |     } | 
 |  | 
 |     /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern | 
 |       * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& matrix) | 
 |     {  | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::analyzePattern(temp); | 
 |     } | 
 |     /** Compute the LDL^T supernodal numerical factorization of \p matrix  | 
 |       *  | 
 |       */ | 
 |     void factorize(const MatrixType& matrix) | 
 |     { | 
 |       ColSpMatrix temp; | 
 |       grabMatrix(matrix, temp); | 
 |       Base::factorize(temp); | 
 |     } | 
 |  | 
 |   protected: | 
 |     using Base::m_iparm; | 
 |      | 
 |     void init() | 
 |     { | 
 |       m_iparm(IPARM_SYM) = API_SYM_YES; | 
 |       m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT; | 
 |     } | 
 |      | 
 |     void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) | 
 |     { | 
 |       // Pastix supports only lower, column-major matrices  | 
 |       out.resize(matrix.rows(), matrix.cols()); | 
 |       out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); | 
 |       internal::c_to_fortran_numbering(out); | 
 |     } | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif |