| #include <typeinfo> | 
 | #include <iostream> | 
 | #include <Eigen/Core> | 
 | #include "BenchTimer.h" | 
 | using namespace Eigen; | 
 | using namespace std; | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v) | 
 | { | 
 |   return v.norm(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v) | 
 | { | 
 |   return v.stableNorm(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v) | 
 | { | 
 |   return v.hypotNorm(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v) | 
 | { | 
 |   return v.blueNorm(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) | 
 | { | 
 |   typedef typename T::Scalar Scalar; | 
 |   int n = v.size(); | 
 |   Scalar scale = 0; | 
 |   Scalar ssq = 1; | 
 |   for (int i=0;i<n;++i) | 
 |   { | 
 |     Scalar ax = std::abs(v.coeff(i)); | 
 |     if (scale >= ax) | 
 |     { | 
 |       ssq += numext::abs2(ax/scale); | 
 |     } | 
 |     else | 
 |     { | 
 |       ssq = Scalar(1) + ssq * numext::abs2(scale/ax); | 
 |       scale = ax; | 
 |     } | 
 |   } | 
 |   return scale * std::sqrt(ssq); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) | 
 | { | 
 |   typedef typename T::Scalar Scalar; | 
 |   Scalar s = v.array().abs().maxCoeff(); | 
 |   return s*(v/s).norm(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) | 
 | { | 
 |   return v.stableNorm(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) | 
 | { | 
 |   int n =v.size() / 2; | 
 |   for (int i=0;i<n;++i) | 
 |     v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1); | 
 |   n = n/2; | 
 |   while (n>0) | 
 |   { | 
 |     for (int i=0;i<n;++i) | 
 |       v(i) = v(2*i) + v(2*i+1); | 
 |     n = n/2; | 
 |   } | 
 |   return std::sqrt(v(0)); | 
 | } | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 | #ifdef EIGEN_VECTORIZE | 
 | Packet4f plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); } | 
 | Packet2d plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); } | 
 |  | 
 | Packet4f pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); } | 
 | Packet2d pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); } | 
 | #endif | 
 | } | 
 | } | 
 |  | 
 | template<typename T> | 
 | EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) | 
 | { | 
 |   #ifndef EIGEN_VECTORIZE | 
 |   return v.blueNorm(); | 
 |   #else | 
 |   typedef typename T::Scalar Scalar; | 
 |  | 
 |   static int nmax = 0; | 
 |   static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; | 
 |   int n; | 
 |  | 
 |   if(nmax <= 0) | 
 |   { | 
 |     int nbig, ibeta, it, iemin, iemax, iexp; | 
 |     Scalar abig, eps; | 
 |  | 
 |     nbig  = NumTraits<int>::highest();          // largest integer | 
 |     ibeta = std::numeric_limits<Scalar>::radix; // NumTraits<Scalar>::Base;                    // base for floating-point numbers | 
 |     it    = NumTraits<Scalar>::digits();        // NumTraits<Scalar>::Mantissa;                // number of base-beta digits in mantissa | 
 |     iemin = NumTraits<Scalar>::min_exponent();  // minimum exponent | 
 |     iemax = NumTraits<Scalar>::max_exponent();  // maximum exponent | 
 |     rbig  = NumTraits<Scalar>::highest();       // largest floating-point number | 
 |  | 
 |     // Check the basic machine-dependent constants. | 
 |     if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) | 
 |       || (it<=4 && ibeta <= 3 ) || it<2) | 
 |     { | 
 |       eigen_assert(false && "the algorithm cannot be guaranteed on this computer"); | 
 |     } | 
 |     iexp  = -((1-iemin)/2); | 
 |     b1    = std::pow(ibeta, iexp);  // lower boundary of midrange | 
 |     iexp  = (iemax + 1 - it)/2; | 
 |     b2    = std::pow(ibeta,iexp);   // upper boundary of midrange | 
 |  | 
 |     iexp  = (2-iemin)/2; | 
 |     s1m   = std::pow(ibeta,iexp);   // scaling factor for lower range | 
 |     iexp  = - ((iemax+it)/2); | 
 |     s2m   = std::pow(ibeta,iexp);   // scaling factor for upper range | 
 |  | 
 |     overfl  = rbig*s2m;          // overflow boundary for abig | 
 |     eps     = std::pow(ibeta, 1-it); | 
 |     relerr  = std::sqrt(eps);      // tolerance for neglecting asml | 
 |     abig    = 1.0/eps - 1.0; | 
 |     if (Scalar(nbig)>abig)  nmax = abig;  // largest safe n | 
 |     else                    nmax = nbig; | 
 |   } | 
 |  | 
 |   typedef typename internal::packet_traits<Scalar>::type Packet; | 
 |   const int ps = internal::packet_traits<Scalar>::size; | 
 |   Packet pasml = internal::pset1<Packet>(Scalar(0)); | 
 |   Packet pamed = internal::pset1<Packet>(Scalar(0)); | 
 |   Packet pabig = internal::pset1<Packet>(Scalar(0)); | 
 |   Packet ps2m = internal::pset1<Packet>(s2m); | 
 |   Packet ps1m = internal::pset1<Packet>(s1m); | 
 |   Packet pb2  = internal::pset1<Packet>(b2); | 
 |   Packet pb1  = internal::pset1<Packet>(b1); | 
 |   for(int j=0; j<v.size(); j+=ps) | 
 |   { | 
 |     Packet ax = internal::pabs(v.template packet<Aligned>(j)); | 
 |     Packet ax_s2m = internal::pmul(ax,ps2m); | 
 |     Packet ax_s1m = internal::pmul(ax,ps1m); | 
 |     Packet maskBig = internal::plt(pb2,ax); | 
 |     Packet maskSml = internal::plt(ax,pb1); | 
 |  | 
 | //     Packet maskMed = internal::pand(maskSml,maskBig); | 
 | //     Packet scale = internal::pset1(Scalar(0)); | 
 | //     scale = internal::por(scale, internal::pand(maskBig,ps2m)); | 
 | //     scale = internal::por(scale, internal::pand(maskSml,ps1m)); | 
 | //     scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed)); | 
 | //     ax = internal::pmul(ax,scale); | 
 | //     ax = internal::pmul(ax,ax); | 
 | //     pabig = internal::padd(pabig, internal::pand(maskBig, ax)); | 
 | //     pasml = internal::padd(pasml, internal::pand(maskSml, ax)); | 
 | //     pamed = internal::padd(pamed, internal::pandnot(ax,maskMed)); | 
 |  | 
 |  | 
 |     pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m,ax_s2m))); | 
 |     pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m,ax_s1m))); | 
 |     pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax,ax),internal::pand(maskSml,maskBig))); | 
 |   } | 
 |   Scalar abig = internal::predux(pabig); | 
 |   Scalar asml = internal::predux(pasml); | 
 |   Scalar amed = internal::predux(pamed); | 
 |   if(abig > Scalar(0)) | 
 |   { | 
 |     abig = std::sqrt(abig); | 
 |     if(abig > overfl) | 
 |     { | 
 |       eigen_assert(false && "overflow"); | 
 |       return rbig; | 
 |     } | 
 |     if(amed > Scalar(0)) | 
 |     { | 
 |       abig = abig/s2m; | 
 |       amed = std::sqrt(amed); | 
 |     } | 
 |     else | 
 |     { | 
 |       return abig/s2m; | 
 |     } | 
 |  | 
 |   } | 
 |   else if(asml > Scalar(0)) | 
 |   { | 
 |     if (amed > Scalar(0)) | 
 |     { | 
 |       abig = std::sqrt(amed); | 
 |       amed = std::sqrt(asml) / s1m; | 
 |     } | 
 |     else | 
 |     { | 
 |       return std::sqrt(asml)/s1m; | 
 |     } | 
 |   } | 
 |   else | 
 |   { | 
 |     return std::sqrt(amed); | 
 |   } | 
 |   asml = std::min(abig, amed); | 
 |   abig = std::max(abig, amed); | 
 |   if(asml <= abig*relerr) | 
 |     return abig; | 
 |   else | 
 |     return abig * std::sqrt(Scalar(1) + numext::abs2(asml/abig)); | 
 |   #endif | 
 | } | 
 |  | 
 | #define BENCH_PERF(NRM) { \ | 
 |   float af = 0; double ad = 0; std::complex<float> ac = 0; \ | 
 |   Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\ | 
 |   for (int k=0; k<tries; ++k) { \ | 
 |     tf.start(); \ | 
 |     for (int i=0; i<iters; ++i) { af += NRM(vf); } \ | 
 |     tf.stop(); \ | 
 |   } \ | 
 |   for (int k=0; k<tries; ++k) { \ | 
 |     td.start(); \ | 
 |     for (int i=0; i<iters; ++i) { ad += NRM(vd); } \ | 
 |     td.stop(); \ | 
 |   } \ | 
 |   /*for (int k=0; k<std::max(1,tries/3); ++k) { \ | 
 |     tcf.start(); \ | 
 |     for (int i=0; i<iters; ++i) { ac += NRM(vcf); } \ | 
 |     tcf.stop(); \ | 
 |   } */\ | 
 |   std::cout << #NRM << "\t" << tf.value() << "   " << td.value() <<  "    " << tcf.value() << "\n"; \ | 
 | } | 
 |  | 
 | void check_accuracy(double basef, double based, int s) | 
 | { | 
 |   double yf = basef * std::abs(internal::random<double>()); | 
 |   double yd = based * std::abs(internal::random<double>()); | 
 |   VectorXf vf = VectorXf::Ones(s) * yf; | 
 |   VectorXd vd = VectorXd::Ones(s) * yd; | 
 |  | 
 |   std::cout << "reference\t" << std::sqrt(double(s))*yf << "\t" << std::sqrt(double(s))*yd << "\n"; | 
 |   std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; | 
 |   std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; | 
 |   std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; | 
 |   std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; | 
 |   std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; | 
 |   std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; | 
 |   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; | 
 | } | 
 |  | 
 | void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) | 
 | { | 
 |   VectorXf vf(s); | 
 |   VectorXd vd(s); | 
 |   for (int i=0; i<s; ++i) | 
 |   { | 
 |     vf[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0,ef1)); | 
 |     vd[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0,ed1)); | 
 |   } | 
 |  | 
 |   //std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; | 
 |   std::cout << "sqsumNorm\t"  << sqsumNorm(vf)  << "\t" << sqsumNorm(vd)  << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; | 
 |   std::cout << "hypotNorm\t"  << hypotNorm(vf)  << "\t" << hypotNorm(vd)  << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; | 
 |   std::cout << "blueNorm\t"   << blueNorm(vf)   << "\t" << blueNorm(vd)   << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | 
 |   std::cout << "pblueNorm\t"  << pblueNorm(vf)  << "\t" << pblueNorm(vd)  << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | 
 |   std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; | 
 |   std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; | 
 | //   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; | 
 | } | 
 |  | 
 | int main(int argc, char** argv) | 
 | { | 
 |   int tries = 10; | 
 |   int iters = 100000; | 
 |   double y = 1.1345743233455785456788e12 * internal::random<double>(); | 
 |   VectorXf v = VectorXf::Ones(1024) * y; | 
 |  | 
 | // return 0; | 
 |   int s = 10000; | 
 |   double basef_ok = 1.1345743233455785456788e15; | 
 |   double based_ok = 1.1345743233455785456788e95; | 
 |  | 
 |   double basef_under = 1.1345743233455785456788e-27; | 
 |   double based_under = 1.1345743233455785456788e-303; | 
 |  | 
 |   double basef_over = 1.1345743233455785456788e+27; | 
 |   double based_over = 1.1345743233455785456788e+302; | 
 |  | 
 |   std::cout.precision(20); | 
 |  | 
 |   std::cerr << "\nNo under/overflow:\n"; | 
 |   check_accuracy(basef_ok, based_ok, s); | 
 |  | 
 |   std::cerr << "\nUnderflow:\n"; | 
 |   check_accuracy(basef_under, based_under, s); | 
 |  | 
 |   std::cerr << "\nOverflow:\n"; | 
 |   check_accuracy(basef_over, based_over, s); | 
 |  | 
 |   std::cerr << "\nVarying (over):\n"; | 
 |   for (int k=0; k<1; ++k) | 
 |   { | 
 |     check_accuracy_var(20,27,190,302,s); | 
 |     std::cout << "\n"; | 
 |   } | 
 |  | 
 |   std::cerr << "\nVarying (under):\n"; | 
 |   for (int k=0; k<1; ++k) | 
 |   { | 
 |     check_accuracy_var(-27,20,-302,-190,s); | 
 |     std::cout << "\n"; | 
 |   } | 
 |  | 
 |   y = 1; | 
 |   std::cout.precision(4); | 
 |   int s1 = 1024*1024*32; | 
 |   std::cerr << "Performance (out of cache, " << s1 << "):\n"; | 
 |   { | 
 |     int iters = 1; | 
 |     VectorXf vf = VectorXf::Random(s1) * y; | 
 |     VectorXd vd = VectorXd::Random(s1) * y; | 
 |     VectorXcf vcf = VectorXcf::Random(s1) * y; | 
 |     BENCH_PERF(sqsumNorm); | 
 |     BENCH_PERF(stableNorm); | 
 |     BENCH_PERF(blueNorm); | 
 |     BENCH_PERF(pblueNorm); | 
 |     BENCH_PERF(lapackNorm); | 
 |     BENCH_PERF(hypotNorm); | 
 |     BENCH_PERF(twopassNorm); | 
 |     BENCH_PERF(bl2passNorm); | 
 |   } | 
 |  | 
 |   std::cerr << "\nPerformance (in cache, " << 512 << "):\n"; | 
 |   { | 
 |     int iters = 100000; | 
 |     VectorXf vf = VectorXf::Random(512) * y; | 
 |     VectorXd vd = VectorXd::Random(512) * y; | 
 |     VectorXcf vcf = VectorXcf::Random(512) * y; | 
 |     BENCH_PERF(sqsumNorm); | 
 |     BENCH_PERF(stableNorm); | 
 |     BENCH_PERF(blueNorm); | 
 |     BENCH_PERF(pblueNorm); | 
 |     BENCH_PERF(lapackNorm); | 
 |     BENCH_PERF(hypotNorm); | 
 |     BENCH_PERF(twopassNorm); | 
 |     BENCH_PERF(bl2passNorm); | 
 |   } | 
 | } |