| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "lapack_common.h" | 
 | #include <Eigen/Cholesky> | 
 |  | 
 | // POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. | 
 | EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info)) | 
 | { | 
 |   *info = 0; | 
 |         if(UPLO(*uplo)==INVALID) *info = -1; | 
 |   else  if(*n<0)                 *info = -2; | 
 |   else  if(*lda<std::max(1,*n))  *info = -4; | 
 |   if(*info!=0) | 
 |   { | 
 |     int e = -*info; | 
 |     return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6); | 
 |   } | 
 |  | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   MatrixType A(a,*n,*n,*lda); | 
 |   int ret; | 
 |   if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A)); | 
 |   else                ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A)); | 
 |  | 
 |   if(ret>=0) | 
 |     *info = ret+1; | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 | // POTRS solves a system of linear equations A*X = B with a symmetric | 
 | // positive definite matrix A using the Cholesky factorization | 
 | // A = U**T*U or A = L*L**T computed by DPOTRF. | 
 | EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info)) | 
 | { | 
 |   *info = 0; | 
 |         if(UPLO(*uplo)==INVALID) *info = -1; | 
 |   else  if(*n<0)                 *info = -2; | 
 |   else  if(*nrhs<0)              *info = -3; | 
 |   else  if(*lda<std::max(1,*n))  *info = -5; | 
 |   else  if(*ldb<std::max(1,*n))  *info = -7; | 
 |   if(*info!=0) | 
 |   { | 
 |     int e = -*info; | 
 |     return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6); | 
 |   } | 
 |  | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   Scalar* b = reinterpret_cast<Scalar*>(pb); | 
 |   MatrixType A(a,*n,*n,*lda); | 
 |   MatrixType B(b,*n,*nrhs,*ldb); | 
 |  | 
 |   if(UPLO(*uplo)==UP) | 
 |   { | 
 |     A.triangularView<Upper>().adjoint().solveInPlace(B); | 
 |     A.triangularView<Upper>().solveInPlace(B); | 
 |   } | 
 |   else | 
 |   { | 
 |     A.triangularView<Lower>().solveInPlace(B); | 
 |     A.triangularView<Lower>().adjoint().solveInPlace(B); | 
 |   } | 
 |  | 
 |   return 0; | 
 | } |