|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  |  | 
|  | // Test the corner cases of pow(x, y) for real types. | 
|  | template<typename Scalar> | 
|  | void pow_test() { | 
|  | const Scalar zero = Scalar(0); | 
|  | const Scalar eps = Eigen::NumTraits<Scalar>::epsilon(); | 
|  | const Scalar one = Scalar(1); | 
|  | const Scalar two = Scalar(2); | 
|  | const Scalar three = Scalar(3); | 
|  | const Scalar sqrt_half = Scalar(std::sqrt(0.5)); | 
|  | const Scalar sqrt2 = Scalar(std::sqrt(2)); | 
|  | const Scalar inf = Eigen::NumTraits<Scalar>::infinity(); | 
|  | const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN(); | 
|  | const Scalar denorm_min = std::numeric_limits<Scalar>::denorm_min(); | 
|  | const Scalar min = (std::numeric_limits<Scalar>::min)(); | 
|  | const Scalar max = (std::numeric_limits<Scalar>::max)(); | 
|  | const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps; | 
|  |  | 
|  | const static Scalar abs_vals[] = {zero, | 
|  | denorm_min, | 
|  | min, | 
|  | eps, | 
|  | sqrt_half, | 
|  | one, | 
|  | sqrt2, | 
|  | two, | 
|  | three, | 
|  | max_exp, | 
|  | max, | 
|  | inf, | 
|  | nan}; | 
|  | const int abs_cases = 13; | 
|  | const int num_cases = 2*abs_cases * 2*abs_cases; | 
|  | // Repeat the same value to make sure we hit the vectorized path. | 
|  | const int num_repeats = 32; | 
|  | Array<Scalar, Dynamic, Dynamic> x(num_repeats, num_cases); | 
|  | Array<Scalar, Dynamic, Dynamic> y(num_repeats, num_cases); | 
|  | int count = 0; | 
|  | for (int i = 0; i < abs_cases; ++i) { | 
|  | const Scalar abs_x = abs_vals[i]; | 
|  | for (int sign_x = 0; sign_x < 2; ++sign_x) { | 
|  | Scalar x_case = sign_x == 0 ? -abs_x : abs_x; | 
|  | for (int j = 0; j < abs_cases; ++j) { | 
|  | const Scalar abs_y = abs_vals[j]; | 
|  | for (int sign_y = 0; sign_y < 2; ++sign_y) { | 
|  | Scalar y_case = sign_y == 0 ? -abs_y : abs_y; | 
|  | for (int repeat = 0; repeat < num_repeats; ++repeat) { | 
|  | x(repeat, count) = x_case; | 
|  | y(repeat, count) = y_case; | 
|  | } | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Array<Scalar, Dynamic, Dynamic> actual = x.pow(y); | 
|  | const Scalar tol = test_precision<Scalar>(); | 
|  | bool all_pass = true; | 
|  | for (int i = 0; i < 1; ++i) { | 
|  | for (int j = 0; j < num_cases; ++j) { | 
|  | Scalar e = static_cast<Scalar>(std::pow(x(i,j), y(i,j))); | 
|  | Scalar a = actual(i, j); | 
|  | bool fail = !(a==e) && !internal::isApprox(a, e, tol) && !((numext::isnan)(a) && (numext::isnan)(e)); | 
|  | all_pass &= !fail; | 
|  | if (fail) { | 
|  | std::cout << "pow(" << x(i,j) << "," << y(i,j) << ")   =   " << a << " !=  " << e << std::endl; | 
|  | } | 
|  | } | 
|  | } | 
|  | VERIFY(all_pass); | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void array(const ArrayType& m) | 
|  | { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename ArrayType::RealScalar RealScalar; | 
|  | typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; | 
|  | typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2 = ArrayType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  | ArrayType m4 = m1; // copy constructor | 
|  | VERIFY_IS_APPROX(m1, m4); | 
|  |  | 
|  | ColVectorType cv1 = ColVectorType::Random(rows); | 
|  | RowVectorType rv1 = RowVectorType::Random(cols); | 
|  |  | 
|  | Scalar  s1 = internal::random<Scalar>(), | 
|  | s2 = internal::random<Scalar>(); | 
|  |  | 
|  | // scalar addition | 
|  | VERIFY_IS_APPROX(m1 + s1, s1 + m1); | 
|  | VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); | 
|  | VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); | 
|  | VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); | 
|  | VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); | 
|  | VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); | 
|  | m3 = m1; | 
|  | m3 += s2; | 
|  | VERIFY_IS_APPROX(m3, m1 + s2); | 
|  | m3 = m1; | 
|  | m3 -= s1; | 
|  | VERIFY_IS_APPROX(m3, m1 - s1); | 
|  |  | 
|  | // scalar operators via Maps | 
|  | m3 = m1; | 
|  | ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m1, m3 - m2); | 
|  |  | 
|  | m3 = m1; | 
|  | ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m1, m3 + m2); | 
|  |  | 
|  | m3 = m1; | 
|  | ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m1, m3 * m2); | 
|  |  | 
|  | m3 = m1; | 
|  | m2 = ArrayType::Random(rows,cols); | 
|  | m2 = (m2==0).select(1,m2); | 
|  | ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); | 
|  | VERIFY_IS_APPROX(m1, m3 / m2); | 
|  |  | 
|  | // reductions | 
|  | VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); | 
|  | VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); | 
|  | using std::abs; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); | 
|  | if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>())) | 
|  | VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); | 
|  | VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>())); | 
|  |  | 
|  | // vector-wise ops | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | 
|  |  | 
|  | // Conversion from scalar | 
|  | VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); | 
|  | VERIFY_IS_APPROX((m3 = 1),  ArrayType::Constant(rows,cols,1)); | 
|  | VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1),  ArrayType::Constant(rows,cols,1)); | 
|  | typedef Array<Scalar, | 
|  | ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime, | 
|  | ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime, | 
|  | ArrayType::Options> FixedArrayType; | 
|  | { | 
|  | FixedArrayType f1(s1); | 
|  | VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); | 
|  | FixedArrayType f2(numext::real(s1)); | 
|  | VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); | 
|  | FixedArrayType f3((int)100*numext::real(s1)); | 
|  | VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); | 
|  | f1.setRandom(); | 
|  | FixedArrayType f4(f1.data()); | 
|  | VERIFY_IS_APPROX(f4, f1); | 
|  | } | 
|  | #if EIGEN_HAS_CXX11 | 
|  | { | 
|  | FixedArrayType f1{s1}; | 
|  | VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); | 
|  | FixedArrayType f2{numext::real(s1)}; | 
|  | VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); | 
|  | FixedArrayType f3{(int)100*numext::real(s1)}; | 
|  | VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); | 
|  | f1.setRandom(); | 
|  | FixedArrayType f4{f1.data()}; | 
|  | VERIFY_IS_APPROX(f4, f1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // pow | 
|  | VERIFY_IS_APPROX(m1.pow(2), m1.square()); | 
|  | VERIFY_IS_APPROX(pow(m1,2), m1.square()); | 
|  | VERIFY_IS_APPROX(m1.pow(3), m1.cube()); | 
|  | VERIFY_IS_APPROX(pow(m1,3), m1.cube()); | 
|  | VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); | 
|  | VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube()); | 
|  | ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); | 
|  | VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); | 
|  | VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); | 
|  | VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square()); | 
|  | VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); | 
|  | VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); | 
|  | VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); | 
|  | VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); | 
|  |  | 
|  | // Check possible conflicts with 1D ctor | 
|  | typedef Array<Scalar, Dynamic, 1> OneDArrayType; | 
|  | { | 
|  | OneDArrayType o1(rows); | 
|  | VERIFY(o1.size()==rows); | 
|  | OneDArrayType o2(static_cast<int>(rows)); | 
|  | VERIFY(o2.size()==rows); | 
|  | } | 
|  | #if EIGEN_HAS_CXX11 | 
|  | { | 
|  | OneDArrayType o1{rows}; | 
|  | VERIFY(o1.size()==rows); | 
|  | OneDArrayType o4{int(rows)}; | 
|  | VERIFY(o4.size()==rows); | 
|  | } | 
|  | #endif | 
|  | // Check possible conflicts with 2D ctor | 
|  | typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType; | 
|  | typedef Array<Scalar, 2, 1> ArrayType2; | 
|  | { | 
|  | TwoDArrayType o1(rows,cols); | 
|  | VERIFY(o1.rows()==rows); | 
|  | VERIFY(o1.cols()==cols); | 
|  | TwoDArrayType o2(static_cast<int>(rows),static_cast<int>(cols)); | 
|  | VERIFY(o2.rows()==rows); | 
|  | VERIFY(o2.cols()==cols); | 
|  |  | 
|  | ArrayType2 o3(rows,cols); | 
|  | VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols)); | 
|  | ArrayType2 o4(static_cast<int>(rows),static_cast<int>(cols)); | 
|  | VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols)); | 
|  | } | 
|  | #if EIGEN_HAS_CXX11 | 
|  | { | 
|  | TwoDArrayType o1{rows,cols}; | 
|  | VERIFY(o1.rows()==rows); | 
|  | VERIFY(o1.cols()==cols); | 
|  | TwoDArrayType o2{int(rows),int(cols)}; | 
|  | VERIFY(o2.rows()==rows); | 
|  | VERIFY(o2.cols()==cols); | 
|  |  | 
|  | ArrayType2 o3{rows,cols}; | 
|  | VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols)); | 
|  | ArrayType2 o4{int(rows),int(cols)}; | 
|  | VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void comparisons(const ArrayType& m) | 
|  | { | 
|  | using std::abs; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows-1), | 
|  | c = internal::random<Index>(0, cols-1); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2 = ArrayType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | m4 = m1; | 
|  |  | 
|  | m4 = (m4.abs()==Scalar(0)).select(1,m4); | 
|  |  | 
|  | VERIFY(((m1 + Scalar(1)) > m1).all()); | 
|  | VERIFY(((m1 - Scalar(1)) < m1).all()); | 
|  | if (rows*cols>1) | 
|  | { | 
|  | m3 = m1; | 
|  | m3(r,c) += 1; | 
|  | VERIFY(! (m1 < m3).all() ); | 
|  | VERIFY(! (m1 > m3).all() ); | 
|  | } | 
|  | VERIFY(!(m1 > m2 && m1 < m2).any()); | 
|  | VERIFY((m1 <= m2 || m1 >= m2).all()); | 
|  |  | 
|  | // comparisons array to scalar | 
|  | VERIFY( (m1 != (m1(r,c)+1) ).any() ); | 
|  | VERIFY( (m1 >  (m1(r,c)-1) ).any() ); | 
|  | VERIFY( (m1 <  (m1(r,c)+1) ).any() ); | 
|  | VERIFY( (m1 ==  m1(r,c)    ).any() ); | 
|  |  | 
|  | // comparisons scalar to array | 
|  | VERIFY( ( (m1(r,c)+1) != m1).any() ); | 
|  | VERIFY( ( (m1(r,c)-1) <  m1).any() ); | 
|  | VERIFY( ( (m1(r,c)+1) >  m1).any() ); | 
|  | VERIFY( (  m1(r,c)    == m1).any() ); | 
|  |  | 
|  | // test Select | 
|  | VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) ); | 
|  | VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) ); | 
|  | Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); | 
|  | for (int j=0; j<cols; ++j) | 
|  | for (int i=0; i<rows; ++i) | 
|  | m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j); | 
|  | VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) | 
|  | .select(ArrayType::Zero(rows,cols),m1), m3); | 
|  | // shorter versions: | 
|  | VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) | 
|  | .select(0,m1), m3); | 
|  | VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid)) | 
|  | .select(m1,0), m3); | 
|  | // even shorter version: | 
|  | VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3); | 
|  |  | 
|  | // count | 
|  | VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols); | 
|  |  | 
|  | // and/or | 
|  | VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0); | 
|  | VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols); | 
|  | RealScalar a = m1.abs().mean(); | 
|  | VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count()); | 
|  |  | 
|  | typedef Array<Index, Dynamic, 1> ArrayOfIndices; | 
|  |  | 
|  | // TODO allows colwise/rowwise for array | 
|  | VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); | 
|  | VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void array_real(const ArrayType& m) | 
|  | { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2 = ArrayType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | m4 = m1; | 
|  |  | 
|  | m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4); | 
|  |  | 
|  | Scalar  s1 = internal::random<Scalar>(); | 
|  |  | 
|  | // these tests are mostly to check possible compilation issues with free-functions. | 
|  | VERIFY_IS_APPROX(m1.sin(), sin(m1)); | 
|  | VERIFY_IS_APPROX(m1.cos(), cos(m1)); | 
|  | VERIFY_IS_APPROX(m1.tan(), tan(m1)); | 
|  | VERIFY_IS_APPROX(m1.asin(), asin(m1)); | 
|  | VERIFY_IS_APPROX(m1.acos(), acos(m1)); | 
|  | VERIFY_IS_APPROX(m1.atan(), atan(m1)); | 
|  | VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); | 
|  | VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); | 
|  | VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); | 
|  | VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); | 
|  | VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); | 
|  | #endif | 
|  | VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.arg(), arg(m1)); | 
|  | VERIFY_IS_APPROX(m1.round(), round(m1)); | 
|  | VERIFY_IS_APPROX(m1.rint(), rint(m1)); | 
|  | VERIFY_IS_APPROX(m1.floor(), floor(m1)); | 
|  | VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); | 
|  | VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); | 
|  | VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); | 
|  | VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); | 
|  | VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); | 
|  | VERIFY_IS_APPROX(m1.abs(), abs(m1)); | 
|  | VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); | 
|  | VERIFY_IS_APPROX(m1.square(), square(m1)); | 
|  | VERIFY_IS_APPROX(m1.cube(), cube(m1)); | 
|  | VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); | 
|  | VERIFY_IS_APPROX(m1.sign(), sign(m1)); | 
|  | VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); | 
|  |  | 
|  | // avoid inf and NaNs so verification doesn't fail | 
|  | m3 = m4.abs(); | 
|  | VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); | 
|  | VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3))); | 
|  | VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3))); | 
|  | VERIFY_IS_APPROX(m3.log(), log(m3)); | 
|  | VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); | 
|  | VERIFY_IS_APPROX(m3.log10(), log10(m3)); | 
|  | VERIFY_IS_APPROX(m3.log2(), log2(m3)); | 
|  |  | 
|  |  | 
|  | VERIFY((!(m1>m2) == (m1<=m2)).all()); | 
|  |  | 
|  | VERIFY_IS_APPROX(sin(m1.asin()), m1); | 
|  | VERIFY_IS_APPROX(cos(m1.acos()), m1); | 
|  | VERIFY_IS_APPROX(tan(m1.atan()), m1); | 
|  | VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1))); | 
|  | VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1))); | 
|  | VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1)))); | 
|  | VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1)))); | 
|  | VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1)))); | 
|  | VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); | 
|  | VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); | 
|  | VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all()); | 
|  | VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all()); | 
|  | VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all()); | 
|  | VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all()); | 
|  | VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all()); | 
|  | VERIFY((Eigen::isinf)(m4/Scalar(0)).all()); | 
|  | VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all()); | 
|  | VERIFY_IS_APPROX(inverse(inverse(m4)),m4); | 
|  | VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); | 
|  | VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); | 
|  | VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); | 
|  | VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); | 
|  | VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); | 
|  | VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); | 
|  |  | 
|  | VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); | 
|  | VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); | 
|  | if(!NumTraits<Scalar>::IsComplex) | 
|  | VERIFY_IS_APPROX(numext::real(m1), m1); | 
|  |  | 
|  | // shift argument of logarithm so that it is not zero | 
|  | Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); | 
|  | VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber)); | 
|  | VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); | 
|  | VERIFY_IS_APPROX(m1.exp(), exp(m1)); | 
|  | VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); | 
|  | VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); | 
|  | VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); | 
|  | VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt()); | 
|  |  | 
|  | // Avoid inf and NaN. | 
|  | m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3); | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); | 
|  | pow_test<Scalar>(); | 
|  |  | 
|  | VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10))); | 
|  | VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2))); | 
|  |  | 
|  | // scalar by array division | 
|  | const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); | 
|  | s1 += Scalar(tiny); | 
|  | m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); | 
|  | VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); | 
|  |  | 
|  | // check inplace transpose | 
|  | m3 = m1; | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3, m1.transpose()); | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3, m1); | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void array_complex(const ArrayType& m) | 
|  | { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2(rows, cols), | 
|  | m4 = m1; | 
|  |  | 
|  | m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); | 
|  | m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag()); | 
|  |  | 
|  | Array<RealScalar, -1, -1> m3(rows, cols); | 
|  |  | 
|  | for (Index i = 0; i < m.rows(); ++i) | 
|  | for (Index j = 0; j < m.cols(); ++j) | 
|  | m2(i,j) = sqrt(m1(i,j)); | 
|  |  | 
|  | // these tests are mostly to check possible compilation issues with free-functions. | 
|  | VERIFY_IS_APPROX(m1.sin(), sin(m1)); | 
|  | VERIFY_IS_APPROX(m1.cos(), cos(m1)); | 
|  | VERIFY_IS_APPROX(m1.tan(), tan(m1)); | 
|  | VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); | 
|  | VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); | 
|  | VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); | 
|  | VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); | 
|  | VERIFY_IS_APPROX(m1.arg(), arg(m1)); | 
|  | VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); | 
|  | VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); | 
|  | VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); | 
|  | VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); | 
|  | VERIFY_IS_APPROX(m1.log(), log(m1)); | 
|  | VERIFY_IS_APPROX(m1.log10(), log10(m1)); | 
|  | VERIFY_IS_APPROX(m1.log2(), log2(m1)); | 
|  | VERIFY_IS_APPROX(m1.abs(), abs(m1)); | 
|  | VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); | 
|  | VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); | 
|  | VERIFY_IS_APPROX(m1.square(), square(m1)); | 
|  | VERIFY_IS_APPROX(m1.cube(), cube(m1)); | 
|  | VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); | 
|  | VERIFY_IS_APPROX(m1.sign(), sign(m1)); | 
|  |  | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); | 
|  | VERIFY_IS_APPROX(m1.exp(), exp(m1)); | 
|  | VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); | 
|  | VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); | 
|  | // Check for larger magnitude complex numbers that expm1 matches exp - 1. | 
|  | VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); | 
|  |  | 
|  | VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); | 
|  | VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); | 
|  | VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); | 
|  | VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1)))); | 
|  |  | 
|  | for (Index i = 0; i < m.rows(); ++i) | 
|  | for (Index j = 0; j < m.cols(); ++j) | 
|  | m3(i,j) = std::atan2(m1(i,j).imag(), m1(i,j).real()); | 
|  | VERIFY_IS_APPROX(arg(m1), m3); | 
|  |  | 
|  | std::complex<RealScalar> zero(0.0,0.0); | 
|  | VERIFY((Eigen::isnan)(m1*zero/zero).all()); | 
|  | #if EIGEN_COMP_MSVC | 
|  | // msvc complex division is not robust | 
|  | VERIFY((Eigen::isinf)(m4/RealScalar(0)).all()); | 
|  | #else | 
|  | #if EIGEN_COMP_CLANG | 
|  | // clang's complex division is notoriously broken too | 
|  | if((numext::isinf)(m4(0,0)/RealScalar(0))) { | 
|  | #endif | 
|  | VERIFY((Eigen::isinf)(m4/zero).all()); | 
|  | #if EIGEN_COMP_CLANG | 
|  | } | 
|  | else | 
|  | { | 
|  | VERIFY((Eigen::isinf)(m4.real()/zero.real()).all()); | 
|  | } | 
|  | #endif | 
|  | #endif // MSVC | 
|  |  | 
|  | VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all()); | 
|  |  | 
|  | VERIFY_IS_APPROX(inverse(inverse(m4)),m4); | 
|  | VERIFY_IS_APPROX(conj(m1.conjugate()), m1); | 
|  | VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag()))); | 
|  | VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); | 
|  | VERIFY_IS_APPROX(log10(m1), log(m1)/log(10)); | 
|  | VERIFY_IS_APPROX(log2(m1), log(m1)/log(2)); | 
|  |  | 
|  | VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); | 
|  | VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1); | 
|  |  | 
|  | // scalar by array division | 
|  | Scalar  s1 = internal::random<Scalar>(); | 
|  | const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon()); | 
|  | s1 += Scalar(tiny); | 
|  | m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); | 
|  | VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); | 
|  |  | 
|  | // check inplace transpose | 
|  | m2 = m1; | 
|  | m2.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m2, m1.transpose()); | 
|  | m2.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m2, m1); | 
|  | // Check vectorized inplace transpose. | 
|  | ArrayType m5 = ArrayType::Random(131, 131); | 
|  | ArrayType m6 = m5; | 
|  | m6.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m6, m5.transpose()); | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void min_max(const ArrayType& m) | 
|  | { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols); | 
|  |  | 
|  | // min/max with array | 
|  | Scalar maxM1 = m1.maxCoeff(); | 
|  | Scalar minM1 = m1.minCoeff(); | 
|  |  | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1))); | 
|  | VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1))); | 
|  |  | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1))); | 
|  | VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1))); | 
|  |  | 
|  | // min/max with scalar input | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1)); | 
|  | VERIFY_IS_APPROX(m1, (m1.min)( maxM1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1)); | 
|  | VERIFY_IS_APPROX(m1, (m1.max)( minM1)); | 
|  |  | 
|  |  | 
|  | // min/max with various NaN propagation options. | 
|  | if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) { | 
|  | m1(0,0) = NumTraits<Scalar>::quiet_NaN(); | 
|  | maxM1 = m1.template maxCoeff<PropagateNaN>(); | 
|  | minM1 = m1.template minCoeff<PropagateNaN>(); | 
|  | VERIFY((numext::isnan)(maxM1)); | 
|  | VERIFY((numext::isnan)(minM1)); | 
|  |  | 
|  | maxM1 = m1.template maxCoeff<PropagateNumbers>(); | 
|  | minM1 = m1.template minCoeff<PropagateNumbers>(); | 
|  | VERIFY(!(numext::isnan)(maxM1)); | 
|  | VERIFY(!(numext::isnan)(minM1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int N> | 
|  | struct shift_left { | 
|  | template<typename Scalar> | 
|  | Scalar operator()(const Scalar& v) const { | 
|  | return v << N; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<int N> | 
|  | struct arithmetic_shift_right { | 
|  | template<typename Scalar> | 
|  | Scalar operator()(const Scalar& v) const { | 
|  | return v >> N; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename ArrayType> void array_integer(const ArrayType& m) | 
|  | { | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2(rows, cols); | 
|  |  | 
|  | m2 = m1.template shiftLeft<2>(); | 
|  | VERIFY( (m2 == m1.unaryExpr(shift_left<2>())).all() ); | 
|  | m2 = m1.template shiftLeft<9>(); | 
|  | VERIFY( (m2 == m1.unaryExpr(shift_left<9>())).all() ); | 
|  |  | 
|  | m2 = m1.template shiftRight<2>(); | 
|  | VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<2>())).all() ); | 
|  | m2 = m1.template shiftRight<9>(); | 
|  | VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<9>())).all() ); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(array_cwise) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( array(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( array(Array22f()) ); | 
|  | CALL_SUBTEST_3( array(Array44d()) ); | 
|  | CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( array(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( array_integer(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( array_integer(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( comparisons(Array22f()) ); | 
|  | CALL_SUBTEST_3( comparisons(Array44d()) ); | 
|  | CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( min_max(Array22f()) ); | 
|  | CALL_SUBTEST_3( min_max(Array44d()) ); | 
|  | CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( array_real(Array22f()) ); | 
|  | CALL_SUBTEST_3( array_real(Array44d()) ); | 
|  | CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) ); | 
|  | CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  |  | 
|  | VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value)); | 
|  | VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value)); | 
|  | VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value)); | 
|  | typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr; | 
|  | VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type, | 
|  | ArrayBase<Xpr> | 
|  | >::value)); | 
|  | } |