|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename T, typename U> | 
|  | bool check_if_equal_or_nans(const T& actual, const U& expected) { | 
|  | return ((actual == expected) || ((numext::isnan)(actual) && (numext::isnan)(expected))); | 
|  | } | 
|  |  | 
|  | template<typename T, typename U> | 
|  | bool check_if_equal_or_nans(const std::complex<T>& actual, const std::complex<U>& expected) { | 
|  | return check_if_equal_or_nans(numext::real(actual), numext::real(expected)) | 
|  | && check_if_equal_or_nans(numext::imag(actual), numext::imag(expected)); | 
|  | } | 
|  |  | 
|  | template<typename T, typename U> | 
|  | bool test_is_equal_or_nans(const T& actual, const U& expected) | 
|  | { | 
|  | if (check_if_equal_or_nans(actual, expected)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // false: | 
|  | std::cerr | 
|  | << "\n    actual   = " << actual | 
|  | << "\n    expected = " << expected << "\n\n"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define VERIFY_IS_EQUAL_OR_NANS(a, b) VERIFY(test_is_equal_or_nans(a, b)) | 
|  |  | 
|  | template<typename T> | 
|  | void check_abs() { | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  | Real zero(0); | 
|  |  | 
|  | if(NumTraits<T>::IsSigned) | 
|  | VERIFY_IS_EQUAL(numext::abs(-T(1)), T(1)); | 
|  | VERIFY_IS_EQUAL(numext::abs(T(0)), T(0)); | 
|  | VERIFY_IS_EQUAL(numext::abs(T(1)), T(1)); | 
|  |  | 
|  | for(int k=0; k<100; ++k) | 
|  | { | 
|  | T x = internal::random<T>(); | 
|  | if(!internal::is_same<T,bool>::value) | 
|  | x = x/Real(2); | 
|  | if(NumTraits<T>::IsSigned) | 
|  | { | 
|  | VERIFY_IS_EQUAL(numext::abs(x), numext::abs(-x)); | 
|  | VERIFY( numext::abs(-x) >= zero ); | 
|  | } | 
|  | VERIFY( numext::abs(x) >= zero ); | 
|  | VERIFY_IS_APPROX( numext::abs2(x), numext::abs2(numext::abs(x)) ); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | void check_arg() { | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  | VERIFY_IS_EQUAL(numext::abs(T(0)), T(0)); | 
|  | VERIFY_IS_EQUAL(numext::abs(T(1)), T(1)); | 
|  |  | 
|  | for(int k=0; k<100; ++k) | 
|  | { | 
|  | T x = internal::random<T>(); | 
|  | Real y = numext::arg(x); | 
|  | VERIFY_IS_APPROX( y, std::arg(x) ); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | struct check_sqrt_impl { | 
|  | static void run() { | 
|  | for (int i=0; i<1000; ++i) { | 
|  | const T x = numext::abs(internal::random<T>()); | 
|  | const T sqrtx = numext::sqrt(x); | 
|  | VERIFY_IS_APPROX(sqrtx*sqrtx, x); | 
|  | } | 
|  |  | 
|  | // Corner cases. | 
|  | const T zero = T(0); | 
|  | const T one = T(1); | 
|  | const T inf = std::numeric_limits<T>::infinity(); | 
|  | const T nan = std::numeric_limits<T>::quiet_NaN(); | 
|  | VERIFY_IS_EQUAL(numext::sqrt(zero), zero); | 
|  | VERIFY_IS_EQUAL(numext::sqrt(inf), inf); | 
|  | VERIFY((numext::isnan)(numext::sqrt(nan))); | 
|  | VERIFY((numext::isnan)(numext::sqrt(-one))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct check_sqrt_impl<std::complex<T>  > { | 
|  | static void run() { | 
|  | typedef typename std::complex<T> ComplexT; | 
|  |  | 
|  | for (int i=0; i<1000; ++i) { | 
|  | const ComplexT x = internal::random<ComplexT>(); | 
|  | const ComplexT sqrtx = numext::sqrt(x); | 
|  | VERIFY_IS_APPROX(sqrtx*sqrtx, x); | 
|  | } | 
|  |  | 
|  | // Corner cases. | 
|  | const T zero = T(0); | 
|  | const T one = T(1); | 
|  | const T inf = std::numeric_limits<T>::infinity(); | 
|  | const T nan = std::numeric_limits<T>::quiet_NaN(); | 
|  |  | 
|  | // Set of corner cases from https://en.cppreference.com/w/cpp/numeric/complex/sqrt | 
|  | const int kNumCorners = 20; | 
|  | const ComplexT corners[kNumCorners][2] = { | 
|  | {ComplexT(zero, zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(-zero, zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(zero, -zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(-zero, -zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(one, inf), ComplexT(inf, inf)}, | 
|  | {ComplexT(nan, inf), ComplexT(inf, inf)}, | 
|  | {ComplexT(one, -inf), ComplexT(inf, -inf)}, | 
|  | {ComplexT(nan, -inf), ComplexT(inf, -inf)}, | 
|  | {ComplexT(-inf, one), ComplexT(zero, inf)}, | 
|  | {ComplexT(inf, one), ComplexT(inf, zero)}, | 
|  | {ComplexT(-inf, -one), ComplexT(zero, -inf)}, | 
|  | {ComplexT(inf, -one), ComplexT(inf, -zero)}, | 
|  | {ComplexT(-inf, nan), ComplexT(nan, inf)}, | 
|  | {ComplexT(inf, nan), ComplexT(inf, nan)}, | 
|  | {ComplexT(zero, nan), ComplexT(nan, nan)}, | 
|  | {ComplexT(one, nan), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, zero), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, one), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, -one), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, nan), ComplexT(nan, nan)}, | 
|  | }; | 
|  |  | 
|  | for (int i=0; i<kNumCorners; ++i) { | 
|  | const ComplexT& x = corners[i][0]; | 
|  | const ComplexT sqrtx = corners[i][1]; | 
|  | VERIFY_IS_EQUAL_OR_NANS(numext::sqrt(x), sqrtx); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | void check_sqrt() { | 
|  | check_sqrt_impl<T>::run(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | struct check_rsqrt_impl { | 
|  | static void run() { | 
|  | const T zero = T(0); | 
|  | const T one = T(1); | 
|  | const T inf = std::numeric_limits<T>::infinity(); | 
|  | const T nan = std::numeric_limits<T>::quiet_NaN(); | 
|  |  | 
|  | for (int i=0; i<1000; ++i) { | 
|  | const T x = numext::abs(internal::random<T>()); | 
|  | const T rsqrtx = numext::rsqrt(x); | 
|  | const T invx = one / x; | 
|  | VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx); | 
|  | } | 
|  |  | 
|  | // Corner cases. | 
|  | VERIFY_IS_EQUAL(numext::rsqrt(zero), inf); | 
|  | VERIFY_IS_EQUAL(numext::rsqrt(inf), zero); | 
|  | VERIFY((numext::isnan)(numext::rsqrt(nan))); | 
|  | VERIFY((numext::isnan)(numext::rsqrt(-one))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct check_rsqrt_impl<std::complex<T> > { | 
|  | static void run() { | 
|  | typedef typename std::complex<T> ComplexT; | 
|  | const T zero = T(0); | 
|  | const T one = T(1); | 
|  | const T inf = std::numeric_limits<T>::infinity(); | 
|  | const T nan = std::numeric_limits<T>::quiet_NaN(); | 
|  |  | 
|  | for (int i=0; i<1000; ++i) { | 
|  | const ComplexT x = internal::random<ComplexT>(); | 
|  | const ComplexT invx = ComplexT(one, zero) / x; | 
|  | const ComplexT rsqrtx = numext::rsqrt(x); | 
|  | VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx); | 
|  | } | 
|  |  | 
|  | // GCC and MSVC differ in their treatment of 1/(0 + 0i) | 
|  | //   GCC/clang = (inf, nan) | 
|  | //   MSVC = (nan, nan) | 
|  | // and 1 / (x + inf i) | 
|  | //   GCC/clang = (0, 0) | 
|  | //   MSVC = (nan, nan) | 
|  | #if (EIGEN_COMP_GNUC) | 
|  | { | 
|  | const int kNumCorners = 20; | 
|  | const ComplexT corners[kNumCorners][2] = { | 
|  | // Only consistent across GCC, clang | 
|  | {ComplexT(zero, zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(-zero, zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(zero, -zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(-zero, -zero), ComplexT(zero, zero)}, | 
|  | {ComplexT(one, inf), ComplexT(inf, inf)}, | 
|  | {ComplexT(nan, inf), ComplexT(inf, inf)}, | 
|  | {ComplexT(one, -inf), ComplexT(inf, -inf)}, | 
|  | {ComplexT(nan, -inf), ComplexT(inf, -inf)}, | 
|  | // Consistent across GCC, clang, MSVC | 
|  | {ComplexT(-inf, one), ComplexT(zero, inf)}, | 
|  | {ComplexT(inf, one), ComplexT(inf, zero)}, | 
|  | {ComplexT(-inf, -one), ComplexT(zero, -inf)}, | 
|  | {ComplexT(inf, -one), ComplexT(inf, -zero)}, | 
|  | {ComplexT(-inf, nan), ComplexT(nan, inf)}, | 
|  | {ComplexT(inf, nan), ComplexT(inf, nan)}, | 
|  | {ComplexT(zero, nan), ComplexT(nan, nan)}, | 
|  | {ComplexT(one, nan), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, zero), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, one), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, -one), ComplexT(nan, nan)}, | 
|  | {ComplexT(nan, nan), ComplexT(nan, nan)}, | 
|  | }; | 
|  |  | 
|  | for (int i=0; i<kNumCorners; ++i) { | 
|  | const ComplexT& x = corners[i][0]; | 
|  | const ComplexT rsqrtx = ComplexT(one, zero) / corners[i][1]; | 
|  | VERIFY_IS_EQUAL_OR_NANS(numext::rsqrt(x), rsqrtx); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | void check_rsqrt() { | 
|  | check_rsqrt_impl<T>::run(); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(numext) { | 
|  | for(int k=0; k<g_repeat; ++k) | 
|  | { | 
|  | CALL_SUBTEST( check_abs<bool>() ); | 
|  | CALL_SUBTEST( check_abs<signed char>() ); | 
|  | CALL_SUBTEST( check_abs<unsigned char>() ); | 
|  | CALL_SUBTEST( check_abs<short>() ); | 
|  | CALL_SUBTEST( check_abs<unsigned short>() ); | 
|  | CALL_SUBTEST( check_abs<int>() ); | 
|  | CALL_SUBTEST( check_abs<unsigned int>() ); | 
|  | CALL_SUBTEST( check_abs<long>() ); | 
|  | CALL_SUBTEST( check_abs<unsigned long>() ); | 
|  | CALL_SUBTEST( check_abs<half>() ); | 
|  | CALL_SUBTEST( check_abs<bfloat16>() ); | 
|  | CALL_SUBTEST( check_abs<float>() ); | 
|  | CALL_SUBTEST( check_abs<double>() ); | 
|  | CALL_SUBTEST( check_abs<long double>() ); | 
|  | CALL_SUBTEST( check_abs<std::complex<float> >() ); | 
|  | CALL_SUBTEST( check_abs<std::complex<double> >() ); | 
|  |  | 
|  | CALL_SUBTEST( check_arg<std::complex<float> >() ); | 
|  | CALL_SUBTEST( check_arg<std::complex<double> >() ); | 
|  |  | 
|  | CALL_SUBTEST( check_sqrt<float>() ); | 
|  | CALL_SUBTEST( check_sqrt<double>() ); | 
|  | CALL_SUBTEST( check_sqrt<std::complex<float> >() ); | 
|  | CALL_SUBTEST( check_sqrt<std::complex<double> >() ); | 
|  |  | 
|  | CALL_SUBTEST( check_rsqrt<float>() ); | 
|  | CALL_SUBTEST( check_rsqrt<double>() ); | 
|  | CALL_SUBTEST( check_rsqrt<std::complex<float> >() ); | 
|  | CALL_SUBTEST( check_rsqrt<std::complex<double> >() ); | 
|  | } | 
|  | } |