|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "packetmath_test_shared.h" | 
|  | #include "random_without_cast_overflow.h" | 
|  |  | 
|  | template <typename T> | 
|  | inline T REF_ADD(const T& a, const T& b) { | 
|  | return a + b; | 
|  | } | 
|  | template <typename T> | 
|  | inline T REF_SUB(const T& a, const T& b) { | 
|  | return a - b; | 
|  | } | 
|  | template <typename T> | 
|  | inline T REF_MUL(const T& a, const T& b) { | 
|  | return a * b; | 
|  | } | 
|  | template <typename T> | 
|  | inline T REF_DIV(const T& a, const T& b) { | 
|  | return a / b; | 
|  | } | 
|  | template <typename T> | 
|  | inline T REF_ABS_DIFF(const T& a, const T& b) { | 
|  | return a > b ? a - b : b - a; | 
|  | } | 
|  |  | 
|  | // Specializations for bool. | 
|  | template <> | 
|  | inline bool REF_ADD(const bool& a, const bool& b) { | 
|  | return a || b; | 
|  | } | 
|  | template <> | 
|  | inline bool REF_SUB(const bool& a, const bool& b) { | 
|  | return a ^ b; | 
|  | } | 
|  | template <> | 
|  | inline bool REF_MUL(const bool& a, const bool& b) { | 
|  | return a && b; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T REF_FREXP(const T& x, T& exp) { | 
|  | int iexp; | 
|  | EIGEN_USING_STD(frexp) | 
|  | const T out = static_cast<T>(frexp(x, &iexp)); | 
|  | exp = static_cast<T>(iexp); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T REF_LDEXP(const T& x, const T& exp) { | 
|  | EIGEN_USING_STD(ldexp) | 
|  | return static_cast<T>(ldexp(x, static_cast<int>(exp))); | 
|  | } | 
|  |  | 
|  | // Uses pcast to cast from one array to another. | 
|  | template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> | 
|  | struct pcast_array; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket, int TgtCoeffRatio> | 
|  | struct pcast_array<SrcPacket, TgtPacket, 1, TgtCoeffRatio> { | 
|  | typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar; | 
|  | typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar; | 
|  | static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) { | 
|  | static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; | 
|  | static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; | 
|  | size_t i; | 
|  | for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) { | 
|  | internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(internal::ploadu<SrcPacket>(src + i))); | 
|  | } | 
|  | // Leftovers that cannot be loaded into a packet. | 
|  | for (; i < size; ++i) { | 
|  | dst[i] = static_cast<TgtScalar>(src[i]); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket> | 
|  | struct pcast_array<SrcPacket, TgtPacket, 2, 1> { | 
|  | static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, | 
|  | typename internal::unpacket_traits<TgtPacket>::type* dst) { | 
|  | static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; | 
|  | static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; | 
|  | for (size_t i = 0; i < size; i += TgtPacketSize) { | 
|  | SrcPacket a = internal::ploadu<SrcPacket>(src + i); | 
|  | SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize); | 
|  | internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b)); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket> | 
|  | struct pcast_array<SrcPacket, TgtPacket, 4, 1> { | 
|  | static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, | 
|  | typename internal::unpacket_traits<TgtPacket>::type* dst) { | 
|  | static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; | 
|  | static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; | 
|  | for (size_t i = 0; i < size; i += TgtPacketSize) { | 
|  | SrcPacket a = internal::ploadu<SrcPacket>(src + i); | 
|  | SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize); | 
|  | SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize); | 
|  | SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize); | 
|  | internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d)); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket> | 
|  | struct pcast_array<SrcPacket, TgtPacket, 8, 1> { | 
|  | static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, | 
|  | typename internal::unpacket_traits<TgtPacket>::type* dst) { | 
|  | static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; | 
|  | static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; | 
|  | for (size_t i = 0; i < size; i += TgtPacketSize) { | 
|  | SrcPacket a = internal::ploadu<SrcPacket>(src + i); | 
|  | SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize); | 
|  | SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize); | 
|  | SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize); | 
|  | SrcPacket e = internal::ploadu<SrcPacket>(src + i + 4 * SrcPacketSize); | 
|  | SrcPacket f = internal::ploadu<SrcPacket>(src + i + 5 * SrcPacketSize); | 
|  | SrcPacket g = internal::ploadu<SrcPacket>(src + i + 6 * SrcPacketSize); | 
|  | SrcPacket h = internal::ploadu<SrcPacket>(src + i + 7 * SrcPacketSize); | 
|  | internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d, e, f, g, h)); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio, bool CanCast = false> | 
|  | struct test_cast_helper; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> | 
|  | struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, false> { | 
|  | static void run() {} | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> | 
|  | struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true> { | 
|  | static void run() { | 
|  | typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar; | 
|  | typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar; | 
|  | static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; | 
|  | static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; | 
|  | static const int BlockSize = SrcPacketSize * SrcCoeffRatio; | 
|  | eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched."); | 
|  |  | 
|  | static const int DataSize = 10 * BlockSize; | 
|  | EIGEN_ALIGN_MAX SrcScalar data1[DataSize]; | 
|  | EIGEN_ALIGN_MAX TgtScalar data2[DataSize]; | 
|  | EIGEN_ALIGN_MAX TgtScalar ref[DataSize]; | 
|  |  | 
|  | // Construct a packet of scalars that will not overflow when casting | 
|  | for (int i = 0; i < DataSize; ++i) { | 
|  | data1[i] = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value(); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < DataSize; ++i) { | 
|  | ref[i] = static_cast<const TgtScalar>(data1[i]); | 
|  | } | 
|  |  | 
|  | pcast_array<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio>::cast(data1, DataSize, data2); | 
|  |  | 
|  | VERIFY(test::areApprox(ref, data2, DataSize) && "internal::pcast<>"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtPacket> | 
|  | struct test_cast { | 
|  | static void run() { | 
|  | typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar; | 
|  | typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar; | 
|  | typedef typename internal::type_casting_traits<SrcScalar, TgtScalar> TypeCastingTraits; | 
|  | static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio; | 
|  | static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio; | 
|  | static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; | 
|  | static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; | 
|  | static const bool HasCast = | 
|  | internal::unpacket_traits<SrcPacket>::vectorizable && internal::unpacket_traits<TgtPacket>::vectorizable && | 
|  | TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio); | 
|  | test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, HasCast>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtScalar, | 
|  | typename TgtPacket = typename internal::packet_traits<TgtScalar>::type, | 
|  | bool Vectorized = internal::packet_traits<TgtScalar>::Vectorizable, | 
|  | bool HasHalf = !internal::is_same<typename internal::unpacket_traits<TgtPacket>::half, TgtPacket>::value> | 
|  | struct test_cast_runner; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtScalar, typename TgtPacket> | 
|  | struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, false> { | 
|  | static void run() { test_cast<SrcPacket, TgtPacket>::run(); } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtScalar, typename TgtPacket> | 
|  | struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, true> { | 
|  | static void run() { | 
|  | test_cast<SrcPacket, TgtPacket>::run(); | 
|  | test_cast_runner<SrcPacket, TgtScalar, typename internal::unpacket_traits<TgtPacket>::half>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcPacket, typename TgtScalar, typename TgtPacket> | 
|  | struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, false, false> { | 
|  | static void run() {} | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, typename Packet, typename EnableIf = void> | 
|  | struct packetmath_pcast_ops_runner { | 
|  | static void run() { | 
|  | test_cast_runner<Packet, float>::run(); | 
|  | test_cast_runner<Packet, double>::run(); | 
|  | test_cast_runner<Packet, int8_t>::run(); | 
|  | test_cast_runner<Packet, uint8_t>::run(); | 
|  | test_cast_runner<Packet, int16_t>::run(); | 
|  | test_cast_runner<Packet, uint16_t>::run(); | 
|  | test_cast_runner<Packet, int32_t>::run(); | 
|  | test_cast_runner<Packet, uint32_t>::run(); | 
|  | test_cast_runner<Packet, int64_t>::run(); | 
|  | test_cast_runner<Packet, uint64_t>::run(); | 
|  | test_cast_runner<Packet, bool>::run(); | 
|  | test_cast_runner<Packet, std::complex<float> >::run(); | 
|  | test_cast_runner<Packet, std::complex<double> >::run(); | 
|  | test_cast_runner<Packet, half>::run(); | 
|  | test_cast_runner<Packet, bfloat16>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Only some types support cast from std::complex<>. | 
|  | template <typename Scalar, typename Packet> | 
|  | struct packetmath_pcast_ops_runner<Scalar, Packet, typename internal::enable_if<NumTraits<Scalar>::IsComplex>::type> { | 
|  | static void run() { | 
|  | test_cast_runner<Packet, std::complex<float> >::run(); | 
|  | test_cast_runner<Packet, std::complex<double> >::run(); | 
|  | test_cast_runner<Packet, half>::run(); | 
|  | test_cast_runner<Packet, bfloat16>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_boolean_mask_ops() { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | const int size = 2 * PacketSize; | 
|  | EIGEN_ALIGN_MAX Scalar data1[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[size]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[size]; | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = internal::random<Scalar>(); | 
|  | } | 
|  | CHECK_CWISE1(internal::ptrue, internal::ptrue); | 
|  | CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(i); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  |  | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); | 
|  |  | 
|  | //Test (-0) == (0) for signed operations | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(-0.0); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); | 
|  |  | 
|  | //Test NaN | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = NumTraits<Scalar>::quiet_NaN(); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_boolean_mask_ops_real() { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | const int size = 2 * PacketSize; | 
|  | EIGEN_ALIGN_MAX Scalar data1[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[size]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[size]; | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = internal::random<Scalar>(); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  |  | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); | 
|  |  | 
|  | //Test (-0) <=/< (0) for signed operations | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(-0.0); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); | 
|  |  | 
|  | //Test NaN | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = NumTraits<Scalar>::quiet_NaN(); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_boolean_mask_ops_notcomplex() { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | const int size = 2 * PacketSize; | 
|  | EIGEN_ALIGN_MAX Scalar data1[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[size]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[size]; | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = internal::random<Scalar>(); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  |  | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); | 
|  |  | 
|  | //Test (-0) <=/< (0) for signed operations | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(-0.0); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); | 
|  |  | 
|  | //Test NaN | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = NumTraits<Scalar>::quiet_NaN(); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); | 
|  | } | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); | 
|  | CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); | 
|  | } | 
|  |  | 
|  | // Packet16b representing bool does not support ptrue, pandnot or pcmp_eq, since the scalar path | 
|  | // (for some compilers) compute the bitwise and with 0x1 of the results to keep the value in [0,1]. | 
|  | template<> | 
|  | void packetmath_boolean_mask_ops<bool, internal::packet_traits<bool>::type>() {} | 
|  | template<> | 
|  | void packetmath_boolean_mask_ops_notcomplex<bool, internal::packet_traits<bool>::type>() {} | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_minus_zero_add() { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | const int size = 2 * PacketSize; | 
|  | EIGEN_ALIGN_MAX Scalar data1[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[size]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[size]; | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(-0.0); | 
|  | data1[i + PacketSize] = Scalar(-0.0); | 
|  | } | 
|  | CHECK_CWISE2_IF(internal::packet_traits<Scalar>::HasAdd, REF_ADD, internal::padd); | 
|  | } | 
|  |  | 
|  | // Ensure optimization barrier compiles and doesn't modify contents. | 
|  | // Only applies to raw types, so will not work for std::complex, Eigen::half | 
|  | // or Eigen::bfloat16. For those you would need to refer to an underlying | 
|  | // storage element. | 
|  | template<typename Packet, typename EnableIf = void> | 
|  | struct eigen_optimization_barrier_test { | 
|  | static void run() {} | 
|  | }; | 
|  |  | 
|  | template<typename Packet> | 
|  | struct eigen_optimization_barrier_test<Packet, typename internal::enable_if< | 
|  | !NumTraits<Packet>::IsComplex && | 
|  | !internal::is_same<Packet, Eigen::half>::value && | 
|  | !internal::is_same<Packet, Eigen::bfloat16>::value | 
|  | >::type> { | 
|  | static void run() { | 
|  | typedef typename internal::unpacket_traits<Packet>::type Scalar; | 
|  | Scalar s = internal::random<Scalar>(); | 
|  | Packet barrier = internal::pset1<Packet>(s); | 
|  | EIGEN_OPTIMIZATION_BARRIER(barrier); | 
|  | eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath() { | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | if (g_first_pass) | 
|  | std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '" | 
|  | << typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n"; | 
|  |  | 
|  | const int max_size = PacketSize > 4 ? PacketSize : 4; | 
|  | const int size = PacketSize * max_size; | 
|  | EIGEN_ALIGN_MAX Scalar data1[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[size]; | 
|  | EIGEN_ALIGN_MAX Scalar data3[size]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[size]; | 
|  | RealScalar refvalue = RealScalar(0); | 
|  |  | 
|  | eigen_optimization_barrier_test<Packet>::run(); | 
|  | eigen_optimization_barrier_test<Scalar>::run(); | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = internal::random<Scalar>() / RealScalar(PacketSize); | 
|  | data2[i] = internal::random<Scalar>() / RealScalar(PacketSize); | 
|  | refvalue = (std::max)(refvalue, numext::abs(data1[i])); | 
|  | } | 
|  |  | 
|  | internal::pstore(data2, internal::pload<Packet>(data1)); | 
|  | VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store"); | 
|  |  | 
|  | for (int offset = 0; offset < PacketSize; ++offset) { | 
|  | internal::pstore(data2, internal::ploadu<Packet>(data1 + offset)); | 
|  | VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu"); | 
|  | } | 
|  |  | 
|  | for (int offset = 0; offset < PacketSize; ++offset) { | 
|  | internal::pstoreu(data2 + offset, internal::pload<Packet>(data1)); | 
|  | VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu"); | 
|  | } | 
|  |  | 
|  | if (internal::unpacket_traits<Packet>::masked_load_available) { | 
|  | test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h; | 
|  | unsigned long long max_umask = (0x1ull << PacketSize); | 
|  |  | 
|  | for (int offset = 0; offset < PacketSize; ++offset) { | 
|  | for (unsigned long long umask = 0; umask < max_umask; ++umask) { | 
|  | h.store(data2, h.load(data1 + offset, umask)); | 
|  | for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0); | 
|  | VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (internal::unpacket_traits<Packet>::masked_store_available) { | 
|  | test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h; | 
|  | unsigned long long max_umask = (0x1ull << PacketSize); | 
|  |  | 
|  | for (int offset = 0; offset < PacketSize; ++offset) { | 
|  | for (unsigned long long umask = 0; umask < max_umask; ++umask) { | 
|  | internal::pstore(data2, internal::pset1<Packet>(Scalar(0))); | 
|  | h.store(data2, h.loadu(data1 + offset), umask); | 
|  | for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0); | 
|  | VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul); | 
|  |  | 
|  | CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv); | 
|  |  | 
|  | if (PacketTraits::HasNegate) CHECK_CWISE1(internal::negate, internal::pnegate); | 
|  | CHECK_CWISE1(numext::conj, internal::pconj); | 
|  |  | 
|  | for (int offset = 0; offset < 3; ++offset) { | 
|  | for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset]; | 
|  | internal::pstore(data2, internal::pset1<Packet>(data1[offset])); | 
|  | VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1"); | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize]; | 
|  | Packet A0, A1, A2, A3; | 
|  | internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3); | 
|  | internal::pstore(data2 + 0 * PacketSize, A0); | 
|  | internal::pstore(data2 + 1 * PacketSize, A1); | 
|  | internal::pstore(data2 + 2 * PacketSize, A2); | 
|  | internal::pstore(data2 + 3 * PacketSize, A3); | 
|  | VERIFY(test::areApprox(ref, data2, 4 * PacketSize) && "internal::pbroadcast4"); | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize]; | 
|  | Packet A0, A1; | 
|  | internal::pbroadcast2<Packet>(data1, A0, A1); | 
|  | internal::pstore(data2 + 0 * PacketSize, A0); | 
|  | internal::pstore(data2 + 1 * PacketSize, A1); | 
|  | VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && "internal::pbroadcast2"); | 
|  | } | 
|  |  | 
|  | VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst"); | 
|  |  | 
|  | if (PacketSize > 1) { | 
|  | // apply different offsets to check that ploaddup is robust to unaligned inputs | 
|  | for (int offset = 0; offset < 4; ++offset) { | 
|  | for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i]; | 
|  | internal::pstore(data2, internal::ploaddup<Packet>(data1 + offset)); | 
|  | VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PacketSize > 2) { | 
|  | // apply different offsets to check that ploadquad is robust to unaligned inputs | 
|  | for (int offset = 0; offset < 4; ++offset) { | 
|  | for (int i = 0; i < PacketSize / 4; ++i) | 
|  | ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i]; | 
|  | internal::pstore(data2, internal::ploadquad<Packet>(data1 + offset)); | 
|  | VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ref[0] = Scalar(0); | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i]; | 
|  | VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); | 
|  |  | 
|  | if (!internal::is_same<Packet, typename internal::unpacket_traits<Packet>::half>::value) { | 
|  | int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize; | 
|  | for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0); | 
|  | for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i]; | 
|  | internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1))); | 
|  | VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4"); | 
|  | } | 
|  |  | 
|  | ref[0] = Scalar(1); | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul"); | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1]; | 
|  | internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1))); | 
|  | VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse"); | 
|  |  | 
|  | internal::PacketBlock<Packet> kernel; | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | kernel.packet[i] = internal::pload<Packet>(data1 + i * PacketSize); | 
|  | } | 
|  | ptranspose(kernel); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | internal::pstore(data2, kernel.packet[i]); | 
|  | for (int j = 0; j < PacketSize; ++j) { | 
|  | VERIFY(test::isApproxAbs(data2[j], data1[i + j * PacketSize], refvalue) && "ptranspose"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // GeneralBlockPanelKernel also checks PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize>; | 
|  | if (PacketSize > 4 && PacketSize % 4 == 0) { | 
|  | internal::PacketBlock<Packet, PacketSize%4==0?4:PacketSize> kernel2; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | kernel2.packet[i] = internal::pload<Packet>(data1 + i * PacketSize); | 
|  | } | 
|  | ptranspose(kernel2); | 
|  | int data_counter = 0; | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | data2[data_counter++] = data1[j*PacketSize + i]; | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | internal::pstore(data3, kernel2.packet[i]); | 
|  | for (int j = 0; j < PacketSize; ++j) { | 
|  | VERIFY(test::isApproxAbs(data3[j], data2[i*PacketSize + j], refvalue) && "ptranspose"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasBlend) { | 
|  | Packet thenPacket = internal::pload<Packet>(data1); | 
|  | Packet elsePacket = internal::pload<Packet>(data2); | 
|  | EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector; | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | selector.select[i] = i; | 
|  | } | 
|  |  | 
|  | Packet blend = internal::pblend(selector, thenPacket, elsePacket); | 
|  | EIGEN_ALIGN_MAX Scalar result[size]; | 
|  | internal::pstore(result, blend); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | // "if" mask | 
|  | unsigned char v = internal::random<bool>() ? 0xff : 0; | 
|  | char* bytes = (char*)(data1 + i); | 
|  | for (int k = 0; k < int(sizeof(Scalar)); ++k) { | 
|  | bytes[k] = v; | 
|  | } | 
|  | // "then" packet | 
|  | data1[i + PacketSize] = internal::random<Scalar>(); | 
|  | // "else" packet | 
|  | data1[i + 2 * PacketSize] = internal::random<Scalar>(); | 
|  | } | 
|  | CHECK_CWISE3_IF(true, internal::pselect, internal::pselect); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = internal::random<Scalar>(); | 
|  | } | 
|  | CHECK_CWISE1(internal::pzero, internal::pzero); | 
|  | CHECK_CWISE2_IF(true, internal::por, internal::por); | 
|  | CHECK_CWISE2_IF(true, internal::pxor, internal::pxor); | 
|  | CHECK_CWISE2_IF(true, internal::pand, internal::pand); | 
|  |  | 
|  | packetmath_boolean_mask_ops<Scalar, Packet>(); | 
|  | packetmath_pcast_ops_runner<Scalar, Packet>::run(); | 
|  | packetmath_minus_zero_add<Scalar, Packet>(); | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = numext::abs(internal::random<Scalar>()); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt); | 
|  | } | 
|  |  | 
|  | // Notice that this definition works for complex types as well. | 
|  | // c++11 has std::log2 for real, but not for complex types. | 
|  | template <typename Scalar> | 
|  | Scalar log2(Scalar x) { | 
|  | return Scalar(EIGEN_LOG2E) * std::log(x); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_real() { | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | const int size = PacketSize * 4; | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6))); | 
|  | data2[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6))); | 
|  | } | 
|  |  | 
|  | if (internal::random<float>(0, 1) < 0.1f) data1[internal::random<int>(0, PacketSize)] = Scalar(0); | 
|  |  | 
|  | CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasLog, log2, internal::plog2); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt); | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3))); | 
|  | data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3))); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan); | 
|  |  | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround); | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print); | 
|  |  | 
|  | packetmath_boolean_mask_ops_real<Scalar,Packet>(); | 
|  |  | 
|  | // Rounding edge cases. | 
|  | if (PacketTraits::HasRound || PacketTraits::HasCeil || PacketTraits::HasFloor || PacketTraits::HasRint) { | 
|  | typedef typename internal::make_integer<Scalar>::type IntType; | 
|  | // Start with values that cannot fit inside an integer, work down to less than one. | 
|  | Scalar val = numext::mini( | 
|  | Scalar(2) * static_cast<Scalar>(NumTraits<IntType>::highest()), | 
|  | NumTraits<Scalar>::highest()); | 
|  | std::vector<Scalar> values; | 
|  | while (val > Scalar(0.25)) { | 
|  | // Cover both even and odd, positive and negative cases. | 
|  | values.push_back(val); | 
|  | values.push_back(val + Scalar(0.3)); | 
|  | values.push_back(val + Scalar(0.5)); | 
|  | values.push_back(val + Scalar(0.8)); | 
|  | values.push_back(val + Scalar(1)); | 
|  | values.push_back(val + Scalar(1.3)); | 
|  | values.push_back(val + Scalar(1.5)); | 
|  | values.push_back(val + Scalar(1.8)); | 
|  | values.push_back(-val); | 
|  | values.push_back(-val - Scalar(0.3)); | 
|  | values.push_back(-val - Scalar(0.5)); | 
|  | values.push_back(-val - Scalar(0.8)); | 
|  | values.push_back(-val - Scalar(1)); | 
|  | values.push_back(-val - Scalar(1.3)); | 
|  | values.push_back(-val - Scalar(1.5)); | 
|  | values.push_back(-val - Scalar(1.8)); | 
|  | values.push_back(Scalar(-1.5) + val);  // Bug 1785. | 
|  | val = val / Scalar(2); | 
|  | } | 
|  | values.push_back(NumTraits<Scalar>::infinity()); | 
|  | values.push_back(-NumTraits<Scalar>::infinity()); | 
|  | values.push_back(NumTraits<Scalar>::quiet_NaN()); | 
|  |  | 
|  | for (size_t k=0; k<values.size(); ++k) { | 
|  | data1[0] = values[k]; | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround); | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); | 
|  | CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(-1, 1)); | 
|  | data2[i] = Scalar(internal::random<double>(-1, 1)); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos); | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(-87, 88)); | 
|  | data2[i] = Scalar(internal::random<double>(-87, 88)); | 
|  | } | 
|  | CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); | 
|  |  | 
|  | CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); | 
|  | if (PacketTraits::HasExp) { | 
|  | // Check denormals: | 
|  | for (int j=0; j<3; ++j) { | 
|  | data1[0] = Scalar(std::ldexp(1, NumTraits<Scalar>::min_exponent()-j)); | 
|  | CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); | 
|  | data1[0] = -data1[0]; | 
|  | CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); | 
|  | } | 
|  |  | 
|  | // zero | 
|  | data1[0] = Scalar(0); | 
|  | CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); | 
|  |  | 
|  | // inf and NaN only compare output fraction, not exponent. | 
|  | test::packet_helper<PacketTraits::HasExp,Packet> h; | 
|  | Packet pout; | 
|  | Scalar sout; | 
|  | Scalar special[] = { NumTraits<Scalar>::infinity(), | 
|  | -NumTraits<Scalar>::infinity(), | 
|  | NumTraits<Scalar>::quiet_NaN()}; | 
|  | for (int i=0; i<3; ++i) { | 
|  | data1[0] = special[i]; | 
|  | ref[0] = Scalar(REF_FREXP(data1[0], ref[PacketSize])); | 
|  | h.store(data2, internal::pfrexp(h.load(data1), h.forward_reference(pout, sout))); | 
|  | VERIFY(test::areApprox(ref, data2, 1) && "internal::pfrexp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(-1, 1)); | 
|  | data2[i] = Scalar(internal::random<double>(-1, 1)); | 
|  | } | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i+PacketSize] = Scalar(internal::random<int>(-4, 4)); | 
|  | data2[i+PacketSize] = Scalar(internal::random<double>(-4, 4)); | 
|  | } | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | if (PacketTraits::HasExp) { | 
|  | data1[0] = Scalar(-1); | 
|  | // underflow to zero | 
|  | data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent()-55); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | // overflow to inf | 
|  | data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent()+10); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | // NaN stays NaN | 
|  | data1[0] = NumTraits<Scalar>::quiet_NaN(); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | // inf stays inf | 
|  | data1[0] = NumTraits<Scalar>::infinity(); | 
|  | data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent()-10); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | // zero stays zero | 
|  | data1[0] = Scalar(0); | 
|  | data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent()+10); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | // Small number big exponent. | 
|  | data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::min_exponent()-1)); | 
|  | data1[PacketSize] = Scalar(-NumTraits<Scalar>::min_exponent() | 
|  | +NumTraits<Scalar>::max_exponent()); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | // Big number small exponent. | 
|  | data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::max_exponent()-1)); | 
|  | data1[PacketSize] = Scalar(+NumTraits<Scalar>::min_exponent() | 
|  | -NumTraits<Scalar>::max_exponent()); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6))); | 
|  | data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6))); | 
|  | } | 
|  | data1[0] = Scalar(1e-20); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); | 
|  | if (PacketTraits::HasExp && PacketSize >= 2) { | 
|  | const Scalar small = NumTraits<Scalar>::epsilon(); | 
|  | data1[0] = NumTraits<Scalar>::quiet_NaN(); | 
|  | data1[1] = small; | 
|  | test::packet_helper<PacketTraits::HasExp, Packet> h; | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | // TODO(rmlarsen): Re-enable for bfloat16. | 
|  | if (!internal::is_same<Scalar, bfloat16>::value) { | 
|  | VERIFY_IS_APPROX(std::exp(small), data2[1]); | 
|  | } | 
|  |  | 
|  | data1[0] = -small; | 
|  | data1[1] = Scalar(0); | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | // TODO(rmlarsen): Re-enable for bfloat16. | 
|  | if (!internal::is_same<Scalar, bfloat16>::value) { | 
|  | VERIFY_IS_APPROX(std::exp(-small), data2[0]); | 
|  | } | 
|  | VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]); | 
|  |  | 
|  | data1[0] = (std::numeric_limits<Scalar>::min)(); | 
|  | data1[1] = -(std::numeric_limits<Scalar>::min)(); | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY_IS_APPROX(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]); | 
|  | VERIFY_IS_APPROX(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]); | 
|  |  | 
|  | data1[0] = std::numeric_limits<Scalar>::denorm_min(); | 
|  | data1[1] = -std::numeric_limits<Scalar>::denorm_min(); | 
|  | h.store(data2, internal::pexp(h.load(data1))); | 
|  | VERIFY_IS_APPROX(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]); | 
|  | VERIFY_IS_APPROX(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]); | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasTanh) { | 
|  | // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details. | 
|  | data1[0] = NumTraits<Scalar>::quiet_NaN(); | 
|  | test::packet_helper<internal::packet_traits<Scalar>::HasTanh, Packet> h; | 
|  | h.store(data2, internal::ptanh(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasExp) { | 
|  | internal::scalar_logistic_op<Scalar> logistic; | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<double>(-20, 20)); | 
|  | } | 
|  |  | 
|  | test::packet_helper<PacketTraits::HasExp, Packet> h; | 
|  | h.store(data2, logistic.packetOp(h.load(data1))); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | VERIFY_IS_APPROX(data2[i], logistic(data1[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_C99_MATH && (EIGEN_COMP_CXXVER >= 11) | 
|  | data1[0] = NumTraits<Scalar>::infinity(); | 
|  | data1[1] = Scalar(-1); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p); | 
|  | data1[0] = NumTraits<Scalar>::infinity(); | 
|  | data1[1] = -NumTraits<Scalar>::infinity(); | 
|  | CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1); | 
|  | #endif | 
|  |  | 
|  | if (PacketSize >= 2) { | 
|  | data1[0] = NumTraits<Scalar>::quiet_NaN(); | 
|  | data1[1] = NumTraits<Scalar>::epsilon(); | 
|  | if (PacketTraits::HasLog) { | 
|  | test::packet_helper<PacketTraits::HasLog, Packet> h; | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | // TODO(cantonios): Re-enable for bfloat16. | 
|  | if (!internal::is_same<Scalar, bfloat16>::value) { | 
|  | VERIFY_IS_APPROX(std::log(data1[1]), data2[1]); | 
|  | } | 
|  |  | 
|  | data1[0] = -NumTraits<Scalar>::epsilon(); | 
|  | data1[1] = Scalar(0); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]); | 
|  |  | 
|  | data1[0] = (std::numeric_limits<Scalar>::min)(); | 
|  | data1[1] = -(std::numeric_limits<Scalar>::min)(); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | // TODO(cantonios): Re-enable for bfloat16. | 
|  | if (!internal::is_same<Scalar, bfloat16>::value) { | 
|  | VERIFY_IS_APPROX(std::log((std::numeric_limits<Scalar>::min)()), data2[0]); | 
|  | } | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | // Note: 32-bit arm always flushes denorms to zero. | 
|  | #if !EIGEN_ARCH_ARM | 
|  | if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) { | 
|  | data1[0] = std::numeric_limits<Scalar>::denorm_min(); | 
|  | data1[1] = -std::numeric_limits<Scalar>::denorm_min(); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | // TODO(rmlarsen): Reenable. | 
|  | //        VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | data1[0] = Scalar(-1.0f); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  |  | 
|  | data1[0] = NumTraits<Scalar>::infinity(); | 
|  | h.store(data2, internal::plog(h.load(data1))); | 
|  | VERIFY((numext::isinf)(data2[0])); | 
|  | } | 
|  | if (PacketTraits::HasLog1p) { | 
|  | test::packet_helper<PacketTraits::HasLog1p, Packet> h; | 
|  | data1[0] = Scalar(-2); | 
|  | data1[1] = -NumTraits<Scalar>::infinity(); | 
|  | h.store(data2, internal::plog1p(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  | } | 
|  | if (PacketTraits::HasSqrt) { | 
|  | test::packet_helper<PacketTraits::HasSqrt, Packet> h; | 
|  | data1[0] = Scalar(-1.0f); | 
|  | if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) { | 
|  | data1[1] = -std::numeric_limits<Scalar>::denorm_min(); | 
|  | } else { | 
|  | data1[1] = -NumTraits<Scalar>::epsilon(); | 
|  | } | 
|  | h.store(data2, internal::psqrt(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  | } | 
|  | // TODO(rmlarsen): Re-enable for half and bfloat16. | 
|  | if (PacketTraits::HasCos | 
|  | && !internal::is_same<Scalar, half>::value | 
|  | && !internal::is_same<Scalar, bfloat16>::value) { | 
|  | test::packet_helper<PacketTraits::HasCos, Packet> h; | 
|  | for (Scalar k = Scalar(1); k < Scalar(10000) / NumTraits<Scalar>::epsilon(); k *= Scalar(2)) { | 
|  | for (int k1 = 0; k1 <= 1; ++k1) { | 
|  | data1[0] = Scalar((2 * double(k) + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2)); | 
|  | data1[1] = Scalar((2 * double(k) + 2 + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2)); | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | h.store(data2 + PacketSize, internal::psin(h.load(data1))); | 
|  | VERIFY(data2[0] <= Scalar(1.) && data2[0] >= Scalar(-1.)); | 
|  | VERIFY(data2[1] <= Scalar(1.) && data2[1] >= Scalar(-1.)); | 
|  | VERIFY(data2[PacketSize + 0] <= Scalar(1.) && data2[PacketSize + 0] >= Scalar(-1.)); | 
|  | VERIFY(data2[PacketSize + 1] <= Scalar(1.) && data2[PacketSize + 1] >= Scalar(-1.)); | 
|  |  | 
|  | VERIFY_IS_APPROX(data2[0], std::cos(data1[0])); | 
|  | VERIFY_IS_APPROX(data2[1], std::cos(data1[1])); | 
|  | VERIFY_IS_APPROX(data2[PacketSize + 0], std::sin(data1[0])); | 
|  | VERIFY_IS_APPROX(data2[PacketSize + 1], std::sin(data1[1])); | 
|  |  | 
|  | VERIFY_IS_APPROX(numext::abs2(data2[0]) + numext::abs2(data2[PacketSize + 0]), Scalar(1)); | 
|  | VERIFY_IS_APPROX(numext::abs2(data2[1]) + numext::abs2(data2[PacketSize + 1]), Scalar(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | data1[0] = NumTraits<Scalar>::infinity(); | 
|  | data1[1] = -NumTraits<Scalar>::infinity(); | 
|  | h.store(data2, internal::psin(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | VERIFY((numext::isnan)(data2[1])); | 
|  |  | 
|  | data1[0] = NumTraits<Scalar>::quiet_NaN(); | 
|  | h.store(data2, internal::psin(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | VERIFY((numext::isnan)(data2[0])); | 
|  |  | 
|  | data1[0] = -Scalar(0.); | 
|  | h.store(data2, internal::psin(h.load(data1))); | 
|  | VERIFY(internal::biteq(data2[0], data1[0])); | 
|  | h.store(data2, internal::pcos(h.load(data1))); | 
|  | VERIFY_IS_EQUAL(data2[0], Scalar(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define CAST_CHECK_CWISE1_IF(COND, REFOP, POP, SCALAR, REFTYPE) if(COND) { \ | 
|  | test::packet_helper<COND,Packet> h; \ | 
|  | for (int i=0; i<PacketSize; ++i) \ | 
|  | ref[i] = SCALAR(REFOP(static_cast<REFTYPE>(data1[i]))); \ | 
|  | h.store(data2, POP(h.load(data1))); \ | 
|  | VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | Scalar propagate_nan_max(const Scalar& a, const Scalar& b) { | 
|  | if ((numext::isnan)(a)) return a; | 
|  | if ((numext::isnan)(b)) return b; | 
|  | return (numext::maxi)(a,b); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | Scalar propagate_nan_min(const Scalar& a, const Scalar& b) { | 
|  | if ((numext::isnan)(a)) return a; | 
|  | if ((numext::isnan)(b)) return b; | 
|  | return (numext::mini)(a,b); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | Scalar propagate_number_max(const Scalar& a, const Scalar& b) { | 
|  | if ((numext::isnan)(a)) return b; | 
|  | if ((numext::isnan)(b)) return a; | 
|  | return (numext::maxi)(a,b); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | Scalar propagate_number_min(const Scalar& a, const Scalar& b) { | 
|  | if ((numext::isnan)(a)) return b; | 
|  | if ((numext::isnan)(b)) return a; | 
|  | return (numext::mini)(a,b); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_notcomplex() { | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; | 
|  |  | 
|  | Array<Scalar, Dynamic, 1>::Map(data1, PacketSize * 4).setRandom(); | 
|  |  | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); | 
|  | VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax); | 
|  |  | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); | 
|  |  | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, internal::pmin<PropagateNumbers>); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>); | 
|  | CHECK_CWISE1(numext::abs, internal::pabs); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff); | 
|  |  | 
|  | ref[0] = data1[0]; | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min"); | 
|  | ref[0] = data1[0]; | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max"); | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i); | 
|  | internal::pstore(data2, internal::plset<Packet>(data1[0])); | 
|  | VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset"); | 
|  |  | 
|  | { | 
|  | unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1); | 
|  | // predux_all - not needed yet | 
|  | // for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff; | 
|  | // VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)"); | 
|  | // for(int k=0; k<PacketSize; ++k) | 
|  | // { | 
|  | //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0; | 
|  | //   VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)"); | 
|  | //   for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff; | 
|  | // } | 
|  |  | 
|  | // predux_any | 
|  | for (unsigned int i = 0; i < PacketSize * sizeof(Scalar); ++i) data1_bits[i] = 0x0; | 
|  | VERIFY((!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)"); | 
|  | for (int k = 0; k < PacketSize; ++k) { | 
|  | for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff; | 
|  | VERIFY(internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)"); | 
|  | for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Test NaN propagation. | 
|  | if (!NumTraits<Scalar>::IsInteger) { | 
|  | // Test reductions with no NaNs. | 
|  | ref[0] = data1[0]; | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNumbers>(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))) && "internal::predux_min<PropagateNumbers>"); | 
|  | ref[0] = data1[0]; | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNaN>(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))) && "internal::predux_min<PropagateNaN>"); | 
|  | ref[0] = data1[0]; | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNumbers>(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))) && "internal::predux_max<PropagateNumbers>"); | 
|  | ref[0] = data1[0]; | 
|  | for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNaN>(ref[0], data1[i]); | 
|  | VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))) && "internal::predux_max<PropagateNumbers>"); | 
|  | // A single NaN. | 
|  | const size_t index = std::numeric_limits<size_t>::quiet_NaN() % PacketSize; | 
|  | data1[index] = NumTraits<Scalar>::quiet_NaN(); | 
|  | VERIFY(PacketSize==1 || !(numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1)))); | 
|  | VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1)))); | 
|  | VERIFY(PacketSize==1 || !(numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1)))); | 
|  | VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1)))); | 
|  | // All NaNs. | 
|  | for (int i = 0; i < 4 * PacketSize; ++i) data1[i] = NumTraits<Scalar>::quiet_NaN(); | 
|  | VERIFY((numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1)))); | 
|  | VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1)))); | 
|  | VERIFY((numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1)))); | 
|  | VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1)))); | 
|  |  | 
|  | // Test NaN propagation for coefficient-wise min and max. | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0); | 
|  | data1[i + PacketSize] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0); | 
|  | } | 
|  | // Note: NaN propagation is implementation defined for pmin/pmax, so we do not test it here. | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, (internal::pmin<PropagateNumbers>)); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_nan_min, (internal::pmin<PropagateNaN>)); | 
|  | CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_nan_max, internal::pmax<PropagateNaN>); | 
|  | } | 
|  |  | 
|  | packetmath_boolean_mask_ops_notcomplex<Scalar, Packet>(); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet, bool ConjLhs, bool ConjRhs> | 
|  | void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) { | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | internal::conj_if<ConjLhs> cj0; | 
|  | internal::conj_if<ConjRhs> cj1; | 
|  | internal::conj_helper<Scalar, Scalar, ConjLhs, ConjRhs> cj; | 
|  | internal::conj_helper<Packet, Packet, ConjLhs, ConjRhs> pcj; | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | ref[i] = cj0(data1[i]) * cj1(data2[i]); | 
|  | VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul"); | 
|  | } | 
|  | internal::pstore(pval, pcj.pmul(internal::pload<Packet>(data1), internal::pload<Packet>(data2))); | 
|  | VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul"); | 
|  |  | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | Scalar tmp = ref[i]; | 
|  | ref[i] += cj0(data1[i]) * cj1(data2[i]); | 
|  | VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd"); | 
|  | } | 
|  | internal::pstore( | 
|  | pval, pcj.pmadd(internal::pload<Packet>(data1), internal::pload<Packet>(data2), internal::pload<Packet>(pval))); | 
|  | VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_complex() { | 
|  | typedef internal::packet_traits<Scalar> PacketTraits; | 
|  | typedef typename Scalar::value_type RealScalar; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  |  | 
|  | const int size = PacketSize * 4; | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; | 
|  | EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4]; | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = internal::random<Scalar>() * Scalar(1e2); | 
|  | data2[i] = internal::random<Scalar>() * Scalar(1e2); | 
|  | } | 
|  |  | 
|  | test_conj_helper<Scalar, Packet, false, false>(data1, data2, ref, pval); | 
|  | test_conj_helper<Scalar, Packet, false, true>(data1, data2, ref, pval); | 
|  | test_conj_helper<Scalar, Packet, true, false>(data1, data2, ref, pval); | 
|  | test_conj_helper<Scalar, Packet, true, true>(data1, data2, ref, pval); | 
|  |  | 
|  | // Test pcplxflip. | 
|  | { | 
|  | for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i])); | 
|  | internal::pstore(pval, internal::pcplxflip(internal::pload<Packet>(data1))); | 
|  | VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip"); | 
|  | } | 
|  |  | 
|  | if (PacketTraits::HasSqrt) { | 
|  | for (int i = 0; i < size; ++i) { | 
|  | data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>()); | 
|  | } | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, size); | 
|  |  | 
|  | // Test misc. corner cases. | 
|  | const RealScalar zero = RealScalar(0); | 
|  | const RealScalar one = RealScalar(1); | 
|  | const RealScalar inf = std::numeric_limits<RealScalar>::infinity(); | 
|  | const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN(); | 
|  | data1[0] = Scalar(zero, zero); | 
|  | data1[1] = Scalar(-zero, zero); | 
|  | data1[2] = Scalar(one, zero); | 
|  | data1[3] = Scalar(zero, one); | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); | 
|  | data1[0] = Scalar(-one, zero); | 
|  | data1[1] = Scalar(zero, -one); | 
|  | data1[2] = Scalar(one, one); | 
|  | data1[3] = Scalar(-one, -one); | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); | 
|  | data1[0] = Scalar(inf, zero); | 
|  | data1[1] = Scalar(zero, inf); | 
|  | data1[2] = Scalar(-inf, zero); | 
|  | data1[3] = Scalar(zero, -inf); | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); | 
|  | data1[0] = Scalar(inf, inf); | 
|  | data1[1] = Scalar(-inf, inf); | 
|  | data1[2] = Scalar(inf, -inf); | 
|  | data1[3] = Scalar(-inf, -inf); | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); | 
|  | data1[0] = Scalar(nan, zero); | 
|  | data1[1] = Scalar(zero, nan); | 
|  | data1[2] = Scalar(nan, one); | 
|  | data1[3] = Scalar(one, nan); | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); | 
|  | data1[0] = Scalar(nan, nan); | 
|  | data1[1] = Scalar(inf, nan); | 
|  | data1[2] = Scalar(nan, inf); | 
|  | data1[3] = Scalar(-inf, nan); | 
|  | CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Packet> | 
|  | void packetmath_scatter_gather() { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | const int PacketSize = internal::unpacket_traits<Packet>::size; | 
|  | EIGEN_ALIGN_MAX Scalar data1[PacketSize]; | 
|  | RealScalar refvalue = RealScalar(0); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | data1[i] = internal::random<Scalar>() / RealScalar(PacketSize); | 
|  | } | 
|  |  | 
|  | int stride = internal::random<int>(1, 20); | 
|  |  | 
|  | // Buffer of zeros. | 
|  | EIGEN_ALIGN_MAX Scalar buffer[PacketSize * 20] = {}; | 
|  |  | 
|  | Packet packet = internal::pload<Packet>(data1); | 
|  | internal::pscatter<Scalar, Packet>(buffer, packet, stride); | 
|  |  | 
|  | for (int i = 0; i < PacketSize * 20; ++i) { | 
|  | if ((i % stride) == 0 && i < stride * PacketSize) { | 
|  | VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter"); | 
|  | } else { | 
|  | VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < PacketSize * 7; ++i) { | 
|  | buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize); | 
|  | } | 
|  | packet = internal::pgather<Scalar, Packet>(buffer, 7); | 
|  | internal::pstore(data1, packet); | 
|  | for (int i = 0; i < PacketSize; ++i) { | 
|  | VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather"); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace test { | 
|  |  | 
|  | template <typename Scalar, typename PacketType> | 
|  | struct runall<Scalar, PacketType, false, false> {  // i.e. float or double | 
|  | static void run() { | 
|  | packetmath<Scalar, PacketType>(); | 
|  | packetmath_scatter_gather<Scalar, PacketType>(); | 
|  | packetmath_notcomplex<Scalar, PacketType>(); | 
|  | packetmath_real<Scalar, PacketType>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, typename PacketType> | 
|  | struct runall<Scalar, PacketType, false, true> {  // i.e. int | 
|  | static void run() { | 
|  | packetmath<Scalar, PacketType>(); | 
|  | packetmath_scatter_gather<Scalar, PacketType>(); | 
|  | packetmath_notcomplex<Scalar, PacketType>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, typename PacketType> | 
|  | struct runall<Scalar, PacketType, true, false> {  // i.e. complex | 
|  | static void run() { | 
|  | packetmath<Scalar, PacketType>(); | 
|  | packetmath_scatter_gather<Scalar, PacketType>(); | 
|  | packetmath_complex<Scalar, PacketType>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace test | 
|  | }  // namespace Eigen | 
|  |  | 
|  | EIGEN_DECLARE_TEST(packetmath) { | 
|  | g_first_pass = true; | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(test::runner<float>::run()); | 
|  | CALL_SUBTEST_2(test::runner<double>::run()); | 
|  | CALL_SUBTEST_3(test::runner<int8_t>::run()); | 
|  | CALL_SUBTEST_4(test::runner<uint8_t>::run()); | 
|  | CALL_SUBTEST_5(test::runner<int16_t>::run()); | 
|  | CALL_SUBTEST_6(test::runner<uint16_t>::run()); | 
|  | CALL_SUBTEST_7(test::runner<int32_t>::run()); | 
|  | CALL_SUBTEST_8(test::runner<uint32_t>::run()); | 
|  | CALL_SUBTEST_9(test::runner<int64_t>::run()); | 
|  | CALL_SUBTEST_10(test::runner<uint64_t>::run()); | 
|  | CALL_SUBTEST_11(test::runner<std::complex<float> >::run()); | 
|  | CALL_SUBTEST_12(test::runner<std::complex<double> >::run()); | 
|  | CALL_SUBTEST_13(test::runner<half>::run()); | 
|  | CALL_SUBTEST_14((packetmath<bool, internal::packet_traits<bool>::type>())); | 
|  | CALL_SUBTEST_15(test::runner<bfloat16>::run()); | 
|  | g_first_pass = false; | 
|  | } | 
|  | } |