| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <typeinfo> | 
 |  | 
 | #if defined __GNUC__ && __GNUC__>=6 | 
 |   #pragma GCC diagnostic ignored "-Wignored-attributes" | 
 | #endif | 
 | // using namespace Eigen; | 
 |  | 
 | bool g_first_pass = true; | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 |  | 
 | template<typename T> T negate(const T& x) { return -x; } | 
 |  | 
 | template<typename T> | 
 | Map<const Array<unsigned char,sizeof(T),1> > | 
 | bits(const T& x) { | 
 |   return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x)); | 
 | } | 
 |  | 
 | // The following implement bitwise operations on floating point types | 
 | template<typename T,typename Bits,typename Func> | 
 | T apply_bit_op(Bits a, Bits b, Func f) { | 
 |   Array<unsigned char,sizeof(T),1> data; | 
 |   T res; | 
 |   for(Index i = 0; i < data.size(); ++i) | 
 |     data[i] = f(a[i], b[i]); | 
 |   // Note: The reinterpret_cast works around GCC's class-memaccess warnings: | 
 |   std::memcpy(reinterpret_cast<unsigned char*>(&res), data.data(), sizeof(T)); | 
 |   return res; | 
 | } | 
 |  | 
 | #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T)             \ | 
 |   template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \ | 
 |     return apply_bit_op<T>(bits(a),bits(b),FUNC);     \ | 
 |   } | 
 |  | 
 | #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC)                  \ | 
 |   EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float)                 \ | 
 |   EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double)                \ | 
 |   EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half)                  \ | 
 |   EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,bfloat16)              \ | 
 |   EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>)   \ | 
 |   EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>) | 
 |  | 
 | EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>()) | 
 | EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>()) | 
 | EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>()) | 
 | struct bit_andnot{ | 
 |   template<typename T> T | 
 |   operator()(T a, T b) const { return a & (~b); } | 
 | }; | 
 | EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot()) | 
 | template<typename T> | 
 | bool biteq(T a, T b) { | 
 |   return (bits(a) == bits(b)).all(); | 
 | } | 
 |  | 
 | } | 
 |  | 
 | namespace test { | 
 |  | 
 | // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. | 
 | template<typename Scalar> EIGEN_DONT_INLINE | 
 | bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) | 
 | { | 
 |   return internal::isMuchSmallerThan(a-b, refvalue); | 
 | } | 
 |  | 
 | template<typename Scalar> | 
 | inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) { | 
 |   std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(ref,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(vec,size) << "]\n"; | 
 | } | 
 |  | 
 | template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) | 
 | { | 
 |   for (int i=0; i<size; ++i) | 
 |   { | 
 |     if (!isApproxAbs(a[i],b[i],refvalue)) | 
 |     { | 
 |       print_mismatch(a, b, size); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) | 
 | { | 
 |   for (int i=0; i<size; ++i) | 
 |   { | 
 |     if ( a[i]!=b[i] && !internal::isApprox(a[i],b[i])  | 
 |          && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) ) | 
 |     { | 
 |       print_mismatch(a, b, size); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template<typename Scalar> bool areEqual(const Scalar* a, const Scalar* b, int size) | 
 | { | 
 |   for (int i=0; i<size; ++i) | 
 |   { | 
 |     if ( (a[i] != b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) ) | 
 |     { | 
 |       print_mismatch(a, b, size); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | #define CHECK_CWISE1(REFOP, POP) { \ | 
 |   for (int i=0; i<PacketSize; ++i) \ | 
 |     ref[i] = REFOP(data1[i]); \ | 
 |   internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ | 
 |   VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ | 
 | } | 
 |  | 
 | // Checks component-wise for input of size N. All of data1, data2, and ref | 
 | // should have size at least ceil(N/PacketSize)*PacketSize to avoid memory | 
 | // access errors. | 
 | #define CHECK_CWISE1_N(REFOP, POP, N) { \ | 
 |   for (int i=0; i<N; ++i) \ | 
 |     ref[i] = REFOP(data1[i]); \ | 
 |   for (int j=0; j<N; j+=PacketSize) \ | 
 |     internal::pstore(data2 + j, POP(internal::pload<Packet>(data1 + j))); \ | 
 |   VERIFY(test::areApprox(ref, data2, N) && #POP); \ | 
 | } | 
 |  | 
 | template<bool Cond,typename Packet> | 
 | struct packet_helper | 
 | { | 
 |   template<typename T> | 
 |   inline Packet load(const T* from) const { return internal::pload<Packet>(from); } | 
 |  | 
 |   template<typename T> | 
 |   inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); } | 
 |  | 
 |   template<typename T> | 
 |   inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); } | 
 |  | 
 |   template<typename T> | 
 |   inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } | 
 |  | 
 |   template<typename T> | 
 |   inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); } | 
 |  | 
 |   template<typename T> | 
 |   inline Packet& forward_reference(Packet& packet, T& /*scalar*/) const { return packet; } | 
 | }; | 
 |  | 
 | template<typename Packet> | 
 | struct packet_helper<false,Packet> | 
 | { | 
 |   template<typename T> | 
 |   inline T load(const T* from) const { return *from; } | 
 |  | 
 |   template<typename T> | 
 |   inline T loadu(const T* from) const { return *from; } | 
 |  | 
 |   template<typename T> | 
 |   inline T load(const T* from, unsigned long long) const { return *from; } | 
 |  | 
 |   template<typename T> | 
 |   inline void store(T* to, const T& x) const { *to = x; } | 
 |  | 
 |   template<typename T> | 
 |   inline void store(T* to, const T& x, unsigned long long) const { *to = x; } | 
 |  | 
 |   template<typename T> | 
 |   inline T& forward_reference(Packet& /*packet*/, T& scalar) const { return scalar; } | 
 | }; | 
 |  | 
 | #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ | 
 |   test::packet_helper<COND,Packet> h; \ | 
 |   for (int i=0; i<PacketSize; ++i) \ | 
 |     ref[i] = Scalar(REFOP(data1[i])); \ | 
 |   h.store(data2, POP(h.load(data1))); \ | 
 |   VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ | 
 | } | 
 |  | 
 | #define CHECK_CWISE1_EXACT_IF(COND, REFOP, POP) if(COND) { \ | 
 |   test::packet_helper<COND,Packet> h; \ | 
 |   for (int i=0; i<PacketSize; ++i) \ | 
 |     ref[i] = Scalar(REFOP(data1[i])); \ | 
 |   h.store(data2, POP(h.load(data1))); \ | 
 |   VERIFY(test::areEqual(ref, data2, PacketSize) && #POP); \ | 
 | } | 
 |  | 
 | #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \ | 
 |   test::packet_helper<COND,Packet> h; \ | 
 |   for (int i=0; i<PacketSize; ++i) \ | 
 |     ref[i] = Scalar(REFOP(data1[i], data1[i+PacketSize]));     \ | 
 |   h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \ | 
 |   VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ | 
 | } | 
 |  | 
 | // One input, one output by reference. | 
 | #define CHECK_CWISE1_BYREF1_IF(COND, REFOP, POP) if(COND) { \ | 
 |   test::packet_helper<COND,Packet> h; \ | 
 |   for (int i=0; i<PacketSize; ++i) \ | 
 |     ref[i] = Scalar(REFOP(data1[i], ref[i+PacketSize]));     \ | 
 |   Packet pout; \ | 
 |   Scalar sout; \ | 
 |   h.store(data2, POP(h.load(data1), h.forward_reference(pout, sout))); \ | 
 |   h.store(data2+PacketSize, h.forward_reference(pout, sout)); \ | 
 |   VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && #POP); \ | 
 | } | 
 |  | 
 | #define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) {                      \ | 
 |   test::packet_helper<COND, Packet> h;                                     \ | 
 |   for (int i = 0; i < PacketSize; ++i)                                     \ | 
 |     ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize],                 \ | 
 |                           data1[i + 2 * PacketSize]));                     \ | 
 |   h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize),            \ | 
 |                      h.load(data1 + 2 * PacketSize)));                     \ | 
 |   VERIFY(test::areApprox(ref, data2, PacketSize) && #POP);                 \ | 
 | } | 
 |  | 
 | // Specialize the runall struct in your test file by defining run(). | 
 | template< | 
 |   typename Scalar, | 
 |   typename PacketType, | 
 |   bool IsComplex = NumTraits<Scalar>::IsComplex, | 
 |   bool IsInteger = NumTraits<Scalar>::IsInteger> | 
 | struct runall; | 
 |  | 
 | template< | 
 |   typename Scalar, | 
 |   typename PacketType = typename internal::packet_traits<Scalar>::type, | 
 |   bool Vectorized = internal::packet_traits<Scalar>::Vectorizable, | 
 |   bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value > | 
 | struct runner; | 
 |  | 
 | template<typename Scalar,typename PacketType> | 
 | struct runner<Scalar,PacketType,true,true> | 
 | { | 
 |   static void run() { | 
 |     runall<Scalar,PacketType>::run(); | 
 |     runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Scalar,typename PacketType> | 
 | struct runner<Scalar,PacketType,true,false> | 
 | { | 
 |   static void run() { | 
 |     runall<Scalar,PacketType>::run(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Scalar,typename PacketType> | 
 | struct runner<Scalar,PacketType,false,false> | 
 | { | 
 |   static void run() { | 
 |     runall<Scalar,PacketType>::run(); | 
 |   } | 
 | }; | 
 |  | 
 | } | 
 | } |