| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | #include "sparse.h" | 
 | #include <Eigen/SparseQR> | 
 |  | 
 | template<typename MatrixType,typename DenseMat> | 
 | int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150) | 
 | { | 
 |   eigen_assert(maxRows >= maxCols); | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   int rows = internal::random<int>(1,maxRows); | 
 |   int cols = internal::random<int>(1,maxCols); | 
 |   double density = (std::max)(8./(rows*cols), 0.01); | 
 |    | 
 |   A.resize(rows,cols); | 
 |   dA.resize(rows,cols); | 
 |   initSparse<Scalar>(density, dA, A,ForceNonZeroDiag); | 
 |   A.makeCompressed(); | 
 |   int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0); | 
 |   for(int k=0; k<nop; ++k) | 
 |   { | 
 |     int j0 = internal::random<int>(0,cols-1); | 
 |     int j1 = internal::random<int>(0,cols-1); | 
 |     Scalar s = internal::random<Scalar>(); | 
 |     A.col(j0)  = s * A.col(j1); | 
 |     dA.col(j0) = s * dA.col(j1); | 
 |   } | 
 |    | 
 | //   if(rows<cols) { | 
 | //     A.conservativeResize(cols,cols); | 
 | //     dA.conservativeResize(cols,cols); | 
 | //     dA.bottomRows(cols-rows).setZero(); | 
 | //   } | 
 |    | 
 |   return rows; | 
 | } | 
 |  | 
 | template<typename Scalar> void test_sparseqr_scalar() | 
 | { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef SparseMatrix<Scalar,ColMajor> MatrixType;  | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat; | 
 |   typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
 |   MatrixType A; | 
 |   DenseMat dA; | 
 |   DenseVector refX,x,b;  | 
 |   SparseQR<MatrixType, COLAMDOrdering<int> > solver;  | 
 |   generate_sparse_rectangular_problem(A,dA); | 
 |    | 
 |   b = dA * DenseVector::Random(A.cols()); | 
 |   solver.compute(A); | 
 |  | 
 |   // Q should be MxM | 
 |   VERIFY_IS_EQUAL(solver.matrixQ().rows(), A.rows()); | 
 |   VERIFY_IS_EQUAL(solver.matrixQ().cols(), A.rows()); | 
 |  | 
 |   // R should be MxN | 
 |   VERIFY_IS_EQUAL(solver.matrixR().rows(), A.rows()); | 
 |   VERIFY_IS_EQUAL(solver.matrixR().cols(), A.cols()); | 
 |  | 
 |   // Q and R can be multiplied | 
 |   DenseMat recoveredA = solver.matrixQ() | 
 |                       * DenseMat(solver.matrixR().template triangularView<Upper>()) | 
 |                       * solver.colsPermutation().transpose(); | 
 |   VERIFY_IS_EQUAL(recoveredA.rows(), A.rows()); | 
 |   VERIFY_IS_EQUAL(recoveredA.cols(), A.cols()); | 
 |  | 
 |   // and in the full rank case the original matrix is recovered | 
 |   if (solver.rank() == A.cols()) | 
 |   { | 
 |       VERIFY_IS_APPROX(A, recoveredA); | 
 |   } | 
 |  | 
 |   if(internal::random<float>(0,1)>0.5f) | 
 |     solver.factorize(A);  // this checks that calling analyzePattern is not needed if the pattern do not change. | 
 |   if (solver.info() != Success) | 
 |   { | 
 |     std::cerr << "sparse QR factorization failed\n"; | 
 |     exit(0); | 
 |     return; | 
 |   } | 
 |   x = solver.solve(b); | 
 |   if (solver.info() != Success) | 
 |   { | 
 |     std::cerr << "sparse QR factorization failed\n"; | 
 |     exit(0); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Compare with a dense QR solver | 
 |   ColPivHouseholderQR<DenseMat> dqr(dA); | 
 |   refX = dqr.solve(b); | 
 |    | 
 |   bool rank_deficient = A.cols()>A.rows() || dqr.rank()<A.cols(); | 
 |   if(rank_deficient) | 
 |   { | 
 |     // rank deficient problem -> we might have to increase the threshold | 
 |     // to get a correct solution. | 
 |     RealScalar th = RealScalar(20)*dA.colwise().norm().maxCoeff()*(A.rows()+A.cols()) * NumTraits<RealScalar>::epsilon(); | 
 |     for(Index k=0; (k<16) && !test_isApprox(A*x,b); ++k) | 
 |     { | 
 |       th *= RealScalar(10); | 
 |       solver.setPivotThreshold(th); | 
 |       solver.compute(A); | 
 |       x = solver.solve(b); | 
 |     } | 
 |   } | 
 |  | 
 |   VERIFY_IS_APPROX(A * x, b); | 
 |    | 
 |   // For rank deficient problem, the estimated rank might | 
 |   // be slightly off, so let's only raise a warning in such cases. | 
 |   if(rank_deficient) ++g_test_level; | 
 |   VERIFY_IS_EQUAL(solver.rank(), dqr.rank()); | 
 |   if(rank_deficient) --g_test_level; | 
 |  | 
 |   if(solver.rank()==A.cols()) // full rank | 
 |     VERIFY_IS_APPROX(x, refX); | 
 | //   else | 
 | //     VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() ); | 
 |  | 
 |   // Compute explicitly the matrix Q | 
 |   MatrixType Q, QtQ, idM; | 
 |   Q = solver.matrixQ(); | 
 |   //Check  ||Q' * Q - I || | 
 |   QtQ = Q * Q.adjoint(); | 
 |   idM.resize(Q.rows(), Q.rows()); idM.setIdentity(); | 
 |   VERIFY(idM.isApprox(QtQ)); | 
 |    | 
 |   // Q to dense | 
 |   DenseMat dQ; | 
 |   dQ = solver.matrixQ(); | 
 |   VERIFY_IS_APPROX(Q, dQ); | 
 | } | 
 | EIGEN_DECLARE_TEST(sparseqr) | 
 | { | 
 |   for(int i=0; i<g_repeat; ++i) | 
 |   { | 
 |     CALL_SUBTEST_1(test_sparseqr_scalar<double>()); | 
 |     CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >()); | 
 |   } | 
 | } | 
 |  |