| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_EULERSYSTEM_H | 
 | #define EIGEN_EULERSYSTEM_H | 
 |  | 
 | namespace Eigen | 
 | { | 
 |   // Forward declarations | 
 |   template <typename Scalar_, class _System> | 
 |   class EulerAngles; | 
 |    | 
 |   namespace internal | 
 |   { | 
 |     // TODO: Add this trait to the Eigen internal API? | 
 |     template <int Num, bool IsPositive = (Num > 0)> | 
 |     struct Abs | 
 |     { | 
 |       enum { value = Num }; | 
 |     }; | 
 |    | 
 |     template <int Num> | 
 |     struct Abs<Num, false> | 
 |     { | 
 |       enum { value = -Num }; | 
 |     }; | 
 |  | 
 |     template <int Axis> | 
 |     struct IsValidAxis | 
 |     { | 
 |       enum { value = Axis != 0 && Abs<Axis>::value <= 3 }; | 
 |     }; | 
 |      | 
 |     template<typename System, | 
 |             typename Other, | 
 |             int OtherRows=Other::RowsAtCompileTime, | 
 |             int OtherCols=Other::ColsAtCompileTime> | 
 |     struct eulerangles_assign_impl; | 
 |   } | 
 |    | 
 |   #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1] | 
 |    | 
 |   /** \brief Representation of a fixed signed rotation axis for EulerSystem. | 
 |     * | 
 |     * \ingroup EulerAngles_Module | 
 |     * | 
 |     * Values here represent: | 
 |     *  - The axis of the rotation: X, Y or Z. | 
 |     *  - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-) | 
 |     * | 
 |     * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z} | 
 |     * | 
 |     * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}. | 
 |     */ | 
 |   enum EulerAxis | 
 |   { | 
 |     EULER_X = 1, /*!< the X axis */ | 
 |     EULER_Y = 2, /*!< the Y axis */ | 
 |     EULER_Z = 3  /*!< the Z axis */ | 
 |   }; | 
 |    | 
 |   /** \class EulerSystem | 
 |     * | 
 |     * \ingroup EulerAngles_Module | 
 |     * | 
 |     * \brief Represents a fixed Euler rotation system. | 
 |     * | 
 |     * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles. | 
 |     * | 
 |     * You can use this class to get two things: | 
 |     *  - Build an Euler system, and then pass it as a template parameter to EulerAngles. | 
 |     *  - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan) | 
 |     * | 
 |     * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles) | 
 |     * This meta-class store constantly those signed axes. (see \ref EulerAxis) | 
 |     * | 
 |     * ### Types of Euler systems ### | 
 |     * | 
 |     * All and only valid 3 dimension Euler rotation over standard | 
 |     *  signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported: | 
 |     *  - all axes X, Y, Z in each valid order (see below what order is valid) | 
 |     *  - rotation over the axis is supported both over the positive and negative directions. | 
 |     *  - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite). | 
 |     * | 
 |     * Since EulerSystem support both positive and negative directions, | 
 |     *  you may call this rotation distinction in other names: | 
 |     *  - _right handed_ or _left handed_ | 
 |     *  - _counterclockwise_ or _clockwise_ | 
 |     * | 
 |     * Notice all axed combination are valid, and would trigger a static assertion. | 
 |     * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid. | 
 |     * This yield two and only two classes: | 
 |     *  - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z} | 
 |     *  - _proper/classic Euler angles_ - The first and the third unsigned axes is equal, | 
 |     *     and the second is different, e.g. {X,Y,X} | 
 |     * | 
 |     * ### Intrinsic vs extrinsic Euler systems ### | 
 |     * | 
 |     * Only intrinsic Euler systems are supported for simplicity. | 
 |     *  If you want to use extrinsic Euler systems, | 
 |     *   just use the equal intrinsic opposite order for axes and angles. | 
 |     *  I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a). | 
 |     * | 
 |     * ### Convenient user typedefs ### | 
 |     * | 
 |     * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems), | 
 |     *  in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ. | 
 |     * | 
 |     * ### Additional reading ### | 
 |     * | 
 |     * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles | 
 |     * | 
 |     * \tparam _AlphaAxis the first fixed EulerAxis | 
 |     * | 
 |     * \tparam _BetaAxis the second fixed EulerAxis | 
 |     * | 
 |     * \tparam _GammaAxis the third fixed EulerAxis | 
 |     */ | 
 |   template <int _AlphaAxis, int _BetaAxis, int _GammaAxis> | 
 |   class EulerSystem | 
 |   { | 
 |     public: | 
 |     // It's defined this way and not as enum, because I think | 
 |     //  that enum is not guerantee to support negative numbers | 
 |      | 
 |     /** The first rotation axis */ | 
 |     static const int AlphaAxis = _AlphaAxis; | 
 |      | 
 |     /** The second rotation axis */ | 
 |     static const int BetaAxis = _BetaAxis; | 
 |      | 
 |     /** The third rotation axis */ | 
 |     static const int GammaAxis = _GammaAxis; | 
 |  | 
 |     enum | 
 |     { | 
 |       AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */ | 
 |       BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */ | 
 |       GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */ | 
 |        | 
 |       IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */ | 
 |       IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */ | 
 |       IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */ | 
 |  | 
 |       // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed | 
 |       // by Z, or Z is followed by X; otherwise it is odd. | 
 |       IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */ | 
 |       IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */ | 
 |  | 
 |       IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */ | 
 |     }; | 
 |      | 
 |     private: | 
 |      | 
 |     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value, | 
 |       ALPHA_AXIS_IS_INVALID); | 
 |        | 
 |     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value, | 
 |       BETA_AXIS_IS_INVALID); | 
 |        | 
 |     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value, | 
 |       GAMMA_AXIS_IS_INVALID); | 
 |        | 
 |     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs, | 
 |       ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS); | 
 |        | 
 |     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs, | 
 |       BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS); | 
 |  | 
 |     static const int | 
 |       // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.  | 
 |       // They are used in this class converters. | 
 |       // They are always different from each other, and their possible values are: 0, 1, or 2. | 
 |       I_ = AlphaAxisAbs - 1, | 
 |       J_ = (AlphaAxisAbs - 1 + 1 + IsOdd)%3, | 
 |       K_ = (AlphaAxisAbs - 1 + 2 - IsOdd)%3 | 
 |     ; | 
 |      | 
 |     // TODO: Get @mat parameter in form that avoids double evaluation. | 
 |     template <typename Derived> | 
 |     static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/) | 
 |     { | 
 |       using std::atan2; | 
 |       using std::sqrt; | 
 |        | 
 |       typedef typename Derived::Scalar Scalar; | 
 |  | 
 |       const Scalar plusMinus = IsEven? 1 : -1; | 
 |       const Scalar minusPlus = IsOdd?  1 : -1; | 
 |  | 
 |       const Scalar Rsum = sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2); | 
 |       res[1] = atan2(plusMinus * mat(I_,K_), Rsum); | 
 |  | 
 |       // There is a singularity when cos(beta) == 0 | 
 |       if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0 | 
 |         res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_)); | 
 |         res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_)); | 
 |       } | 
 |       else if(plusMinus * mat(I_, K_) > 0) {// cos(beta) == 0 and sin(beta) == 1 | 
 |         Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_); // 2*sin(alpha + plusMinus * gamma | 
 |         Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_); // 2*cos(alpha + plusMinus * gamma) | 
 |         Scalar alphaPlusMinusGamma = atan2(spos, cpos); | 
 |         res[0] = alphaPlusMinusGamma; | 
 |         res[2] = 0; | 
 |       } | 
 |       else {// cos(beta) == 0 and sin(beta) == -1 | 
 |         Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_)); // 2*sin(alpha + minusPlus*gamma) | 
 |         Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_);               // 2*cos(alpha + minusPlus*gamma) | 
 |         Scalar alphaMinusPlusBeta = atan2(sneg, cneg); | 
 |         res[0] = alphaMinusPlusBeta; | 
 |         res[2] = 0; | 
 |       } | 
 |     } | 
 |  | 
 |     template <typename Derived> | 
 |     static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, | 
 |                                     const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/) | 
 |     { | 
 |       using std::atan2; | 
 |       using std::sqrt; | 
 |  | 
 |       typedef typename Derived::Scalar Scalar; | 
 |  | 
 |       const Scalar plusMinus = IsEven? 1 : -1; | 
 |       const Scalar minusPlus = IsOdd?  1 : -1; | 
 |  | 
 |       const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2); | 
 |  | 
 |       res[1] = atan2(Rsum, mat(I_, I_)); | 
 |  | 
 |       // There is a singularity when sin(beta) == 0 | 
 |       if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0 | 
 |         res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_)); | 
 |         res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_)); | 
 |       } | 
 |       else if(mat(I_, I_) > 0) {// sin(beta) == 0 and cos(beta) == 1 | 
 |         Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_); // 2*sin(alpha + gamma) | 
 |         Scalar cpos = mat(J_, J_) + mat(K_, K_);                         // 2*cos(alpha + gamma) | 
 |         res[0] = atan2(spos, cpos); | 
 |         res[2] = 0; | 
 |       } | 
 |       else {// sin(beta) == 0 and cos(beta) == -1 | 
 |         Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_); // 2*sin(alpha - gamma) | 
 |         Scalar cneg = mat(J_, J_) - mat(K_, K_);                         // 2*cos(alpha - gamma) | 
 |         res[0] = atan2(sneg, cneg); | 
 |         res[2] = 0; | 
 |       } | 
 |     } | 
 |      | 
 |     template<typename Scalar> | 
 |     static void CalcEulerAngles( | 
 |       EulerAngles<Scalar, EulerSystem>& res, | 
 |       const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) | 
 |     { | 
 |       CalcEulerAngles_imp( | 
 |         res.angles(), mat, | 
 |         typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type()); | 
 |  | 
 |       if (IsAlphaOpposite) | 
 |         res.alpha() = -res.alpha(); | 
 |          | 
 |       if (IsBetaOpposite) | 
 |         res.beta() = -res.beta(); | 
 |          | 
 |       if (IsGammaOpposite) | 
 |         res.gamma() = -res.gamma(); | 
 |     } | 
 |      | 
 |     template <typename Scalar_, class _System> | 
 |     friend class Eigen::EulerAngles; | 
 |      | 
 |     template<typename System, | 
 |             typename Other, | 
 |             int OtherRows, | 
 |             int OtherCols> | 
 |     friend struct internal::eulerangles_assign_impl; | 
 |   }; | 
 |  | 
 | #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \ | 
 |   /** \ingroup EulerAngles_Module */ \ | 
 |   typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C; | 
 |    | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X) | 
 |    | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y) | 
 |    | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X) | 
 |   EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z) | 
 | } | 
 |  | 
 | #endif // EIGEN_EULERSYSTEM_H |