| namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Scalar> | 
 | void r1updt( | 
 |         Matrix< Scalar, Dynamic, Dynamic > &s, | 
 |         const Matrix< Scalar, Dynamic, 1> &u, | 
 |         std::vector<JacobiRotation<Scalar> > &v_givens, | 
 |         std::vector<JacobiRotation<Scalar> > &w_givens, | 
 |         Matrix< Scalar, Dynamic, 1> &v, | 
 |         Matrix< Scalar, Dynamic, 1> &w, | 
 |         bool *sing) | 
 | { | 
 |     typedef DenseIndex Index; | 
 |     const JacobiRotation<Scalar> IdentityRotation = JacobiRotation<Scalar>(1,0); | 
 |  | 
 |     /* Local variables */ | 
 |     const Index m = s.rows(); | 
 |     const Index n = s.cols(); | 
 |     Index i, j=1; | 
 |     Scalar temp; | 
 |     JacobiRotation<Scalar> givens; | 
 |  | 
 |     // r1updt had a broader usecase, but we don't use it here. And, more | 
 |     // importantly, we can not test it. | 
 |     eigen_assert(m==n); | 
 |     eigen_assert(u.size()==m); | 
 |     eigen_assert(v.size()==n); | 
 |     eigen_assert(w.size()==n); | 
 |  | 
 |     /* move the nontrivial part of the last column of s into w. */ | 
 |     w[n-1] = s(n-1,n-1); | 
 |  | 
 |     /* rotate the vector v into a multiple of the n-th unit vector */ | 
 |     /* in such a way that a spike is introduced into w. */ | 
 |     for (j=n-2; j>=0; --j) { | 
 |         w[j] = 0.; | 
 |         if (v[j] != 0.) { | 
 |             /* determine a givens rotation which eliminates the */ | 
 |             /* j-th element of v. */ | 
 |             givens.makeGivens(-v[n-1], v[j]); | 
 |  | 
 |             /* apply the transformation to v and store the information */ | 
 |             /* necessary to recover the givens rotation. */ | 
 |             v[n-1] = givens.s() * v[j] + givens.c() * v[n-1]; | 
 |             v_givens[j] = givens; | 
 |  | 
 |             /* apply the transformation to s and extend the spike in w. */ | 
 |             for (i = j; i < m; ++i) { | 
 |                 temp = givens.c() * s(j,i) - givens.s() * w[i]; | 
 |                 w[i] = givens.s() * s(j,i) + givens.c() * w[i]; | 
 |                 s(j,i) = temp; | 
 |             } | 
 |         } else | 
 |             v_givens[j] = IdentityRotation; | 
 |     } | 
 |  | 
 |     /* add the spike from the rank 1 update to w. */ | 
 |     w += v[n-1] * u; | 
 |  | 
 |     /* eliminate the spike. */ | 
 |     *sing = false; | 
 |     for (j = 0; j < n-1; ++j) { | 
 |         if (w[j] != 0.) { | 
 |             /* determine a givens rotation which eliminates the */ | 
 |             /* j-th element of the spike. */ | 
 |             givens.makeGivens(-s(j,j), w[j]); | 
 |  | 
 |             /* apply the transformation to s and reduce the spike in w. */ | 
 |             for (i = j; i < m; ++i) { | 
 |                 temp = givens.c() * s(j,i) + givens.s() * w[i]; | 
 |                 w[i] = -givens.s() * s(j,i) + givens.c() * w[i]; | 
 |                 s(j,i) = temp; | 
 |             } | 
 |  | 
 |             /* store the information necessary to recover the */ | 
 |             /* givens rotation. */ | 
 |             w_givens[j] = givens; | 
 |         } else | 
 |             v_givens[j] = IdentityRotation; | 
 |  | 
 |         /* test for zero diagonal elements in the output s. */ | 
 |         if (s(j,j) == 0.) { | 
 |             *sing = true; | 
 |         } | 
 |     } | 
 |     /* move w back into the last column of the output s. */ | 
 |     s(n-1,n-1) = w[n-1]; | 
 |  | 
 |     if (s(j,j) == 0.) { | 
 |         *sing = true; | 
 |     } | 
 |     return; | 
 | } | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen |