|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  |  | 
|  | #ifndef EIGEN_BESSELFUNCTIONS_ARRAYAPI_H | 
|  | #define EIGEN_BESSELFUNCTIONS_ARRAYAPI_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise i0(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the modified Bessel function of the first kind of order zero. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of i0(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_i0() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i0_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_i0(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i0_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise i0e(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the exponentially scaled modified Bessel | 
|  | * function of the first kind of order zero. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of i0e(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_i0e() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i0e_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_i0e(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i0e_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise i1(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the modified Bessel function of the first kind of order one. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of i1(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_i1() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i1_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_i1(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i1_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise i1e(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the exponentially scaled modified Bessel | 
|  | * function of the first kind of order one. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of i1e(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_i1e() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i1e_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_i1e(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_i1e_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise k0(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the modified Bessel function of the second kind of order zero. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of k0(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_k0() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k0_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_k0(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k0_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise k0e(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the exponentially scaled modified Bessel | 
|  | * function of the second kind of order zero. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of k0e(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_k0e() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k0e_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_k0e(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k0e_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise k1(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the modified Bessel function of the second kind of order one. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of k1(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_k1() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k1_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_k1(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k1_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise k1e(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the exponentially scaled modified Bessel | 
|  | * function of the second kind of order one. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of k1e(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_k1e() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k1e_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_k1e(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_k1e_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise j0(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the Bessel function of the first kind of order zero. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of j0(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_j0() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_j0_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_j0(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_j0_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise y0(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the Bessel function of the second kind of order zero. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of y0(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_y0() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_y0_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_y0(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_y0_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise j1(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the modified Bessel function of the first kind of order one. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of j1(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_j1() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_j1_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_j1(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_j1_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the coefficient-wise y1(\a x) to the given | 
|  | * arrays. | 
|  | * | 
|  | * It returns the Bessel function of the second kind of order one. | 
|  | * | 
|  | * \param x is the argument | 
|  | * | 
|  | * \note This function supports only float and double scalar types. To support | 
|  | * other scalar types, the user has to provide implementations of y1(T) for | 
|  | * any scalar type T to be supported. | 
|  | * | 
|  | * \sa ArrayBase::bessel_y1() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_y1_op<typename Derived::Scalar>, const Derived> | 
|  | bessel_y1(const Eigen::ArrayBase<Derived>& x) { | 
|  | return Eigen::CwiseUnaryOp< | 
|  | Eigen::internal::scalar_bessel_y1_op<typename Derived::Scalar>, | 
|  | const Derived>(x.derived()); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_BESSELFUNCTIONS_ARRAYAPI_H |