| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #include <unsupported/Eigen/EulerAngles> | 
 |  | 
 | using namespace Eigen; | 
 |  | 
 | // Unfortunately, we need to specialize it in order to work. (We could add it in main.h test framework) | 
 | template <typename Scalar, class System> | 
 | bool verifyIsApprox(const Eigen::EulerAngles<Scalar, System>& a, const Eigen::EulerAngles<Scalar, System>& b) | 
 | { | 
 |   return verifyIsApprox(a.angles(), b.angles()); | 
 | } | 
 |  | 
 | // Verify that x is in the approxed range [a, b] | 
 | #define VERIFY_APPROXED_RANGE(a, x, b) \ | 
 |   do { \ | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(a, x); \ | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(x, b); \ | 
 |   } while(0) | 
 |  | 
 | const char X = EULER_X; | 
 | const char Y = EULER_Y; | 
 | const char Z = EULER_Z; | 
 |  | 
 | template<typename Scalar, class EulerSystem> | 
 | void verify_euler(const EulerAngles<Scalar, EulerSystem>& e) | 
 | { | 
 |   typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType; | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef Quaternion<Scalar> QuaternionType; | 
 |   typedef AngleAxis<Scalar> AngleAxisType; | 
 |    | 
 |   const Scalar ONE = Scalar(1); | 
 |   const Scalar HALF_PI = Scalar(EIGEN_PI / 2); | 
 |   const Scalar PI = Scalar(EIGEN_PI); | 
 |    | 
 |   // It's very important calc the acceptable precision depending on the distance from the pole. | 
 |   const Scalar longitudeRadius = std::abs( | 
 |     EulerSystem::IsTaitBryan ? | 
 |     std::cos(e.beta()) : | 
 |     std::sin(e.beta()) | 
 |     ); | 
 |   Scalar precision = test_precision<Scalar>() / longitudeRadius; | 
 |    | 
 |   Scalar betaRangeStart, betaRangeEnd; | 
 |   if (EulerSystem::IsTaitBryan) | 
 |   { | 
 |     betaRangeStart = -HALF_PI; | 
 |     betaRangeEnd = HALF_PI; | 
 |   } | 
 |   else | 
 |   { | 
 |     if (!EulerSystem::IsBetaOpposite) | 
 |     { | 
 |       betaRangeStart = 0; | 
 |       betaRangeEnd = PI; | 
 |     } | 
 |     else | 
 |     { | 
 |       betaRangeStart = -PI; | 
 |       betaRangeEnd = 0; | 
 |     } | 
 |   } | 
 |    | 
 |   const Vector3 I_ = EulerAnglesType::AlphaAxisVector(); | 
 |   const Vector3 J_ = EulerAnglesType::BetaAxisVector(); | 
 |   const Vector3 K_ = EulerAnglesType::GammaAxisVector(); | 
 |    | 
 |   // Is approx checks | 
 |   VERIFY(e.isApprox(e)); | 
 |   VERIFY_IS_APPROX(e, e); | 
 |   VERIFY_IS_NOT_APPROX(e, EulerAnglesType(e.alpha() + ONE, e.beta() + ONE, e.gamma() + ONE)); | 
 |  | 
 |   const Matrix3 m(e); | 
 |   VERIFY_IS_APPROX(Scalar(m.determinant()), ONE); | 
 |  | 
 |   EulerAnglesType ebis(m); | 
 |    | 
 |   // When no roll(acting like polar representation), we have the best precision. | 
 |   // One of those cases is when the Euler angles are on the pole, and because it's singular case, | 
 |   //  the computation returns no roll. | 
 |   if (ebis.beta() == 0) | 
 |     precision = test_precision<Scalar>(); | 
 |    | 
 |   // Check that eabis in range | 
 |   VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI); | 
 |   VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd); | 
 |   VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI); | 
 |  | 
 |   const Matrix3 mbis(AngleAxisType(ebis.alpha(), I_) * AngleAxisType(ebis.beta(), J_) * AngleAxisType(ebis.gamma(), K_)); | 
 |   VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE); | 
 |   VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix()); | 
 |   /*std::cout << "===================\n" << | 
 |     "e: " << e << std::endl << | 
 |     "eabis: " << eabis.transpose() << std::endl << | 
 |     "m: " << m << std::endl << | 
 |     "mbis: " << mbis << std::endl << | 
 |     "X: " << (m * Vector3::UnitX()).transpose() << std::endl << | 
 |     "X: " << (mbis * Vector3::UnitX()).transpose() << std::endl;*/ | 
 |   VERIFY(m.isApprox(mbis, precision)); | 
 |  | 
 |   // Test if ea and eabis are the same | 
 |   // Need to check both singular and non-singular cases | 
 |   // There are two singular cases. | 
 |   // 1. When I==K and sin(ea(1)) == 0 | 
 |   // 2. When I!=K and cos(ea(1)) == 0 | 
 |  | 
 |   // TODO: Make this test work well, and use range saturation function. | 
 |   /*// If I==K, and ea[1]==0, then there no unique solution. | 
 |   // The remark apply in the case where I!=K, and |ea[1]| is close to +-pi/2. | 
 |   if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )  | 
 |       VERIFY_IS_APPROX(ea, eabis);*/ | 
 |    | 
 |   // Quaternions | 
 |   const QuaternionType q(e); | 
 |   ebis = q; | 
 |   const QuaternionType qbis(ebis); | 
 |   VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision)); | 
 |   //VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same | 
 |    | 
 |   // A suggestion for simple product test when will be supported. | 
 |   /*EulerAnglesType e2(PI/2, PI/2, PI/2); | 
 |   Matrix3 m2(e2); | 
 |   VERIFY_IS_APPROX(e*e2, m*m2);*/ | 
 | } | 
 |  | 
 | template<signed char A, signed char B, signed char C, typename Scalar> | 
 | void verify_euler_vec(const Matrix<Scalar,3,1>& ea) | 
 | { | 
 |   verify_euler(EulerAngles<Scalar, EulerSystem<A, B, C> >(ea[0], ea[1], ea[2])); | 
 | } | 
 |  | 
 | template<signed char A, signed char B, signed char C, typename Scalar> | 
 | void verify_euler_all_neg(const Matrix<Scalar,3,1>& ea) | 
 | { | 
 |   verify_euler_vec<+A,+B,+C>(ea); | 
 |   verify_euler_vec<+A,+B,-C>(ea); | 
 |   verify_euler_vec<+A,-B,+C>(ea); | 
 |   verify_euler_vec<+A,-B,-C>(ea); | 
 |    | 
 |   verify_euler_vec<-A,+B,+C>(ea); | 
 |   verify_euler_vec<-A,+B,-C>(ea); | 
 |   verify_euler_vec<-A,-B,+C>(ea); | 
 |   verify_euler_vec<-A,-B,-C>(ea); | 
 | } | 
 |  | 
 | template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea) | 
 | { | 
 |   verify_euler_all_neg<X,Y,Z>(ea); | 
 |   verify_euler_all_neg<X,Y,X>(ea); | 
 |   verify_euler_all_neg<X,Z,Y>(ea); | 
 |   verify_euler_all_neg<X,Z,X>(ea); | 
 |    | 
 |   verify_euler_all_neg<Y,Z,X>(ea); | 
 |   verify_euler_all_neg<Y,Z,Y>(ea); | 
 |   verify_euler_all_neg<Y,X,Z>(ea); | 
 |   verify_euler_all_neg<Y,X,Y>(ea); | 
 |    | 
 |   verify_euler_all_neg<Z,X,Y>(ea); | 
 |   verify_euler_all_neg<Z,X,Z>(ea); | 
 |   verify_euler_all_neg<Z,Y,X>(ea); | 
 |   verify_euler_all_neg<Z,Y,Z>(ea); | 
 | } | 
 |  | 
 | template<typename Scalar> void check_singular_cases(const Scalar& singularBeta) | 
 | { | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   const Scalar PI = Scalar(EIGEN_PI); | 
 |    | 
 |   for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2)) | 
 |   { | 
 |     check_all_var(Vector3(PI/4, singularBeta, PI/3)); | 
 |     check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3)); | 
 |     check_all_var(Vector3(PI/4, singularBeta - Scalar(1.5)*epsilon, PI/3)); | 
 |     check_all_var(Vector3(PI/4, singularBeta - 2*epsilon, PI/3)); | 
 |     check_all_var(Vector3(PI*Scalar(0.8), singularBeta - epsilon, Scalar(0.9)*PI)); | 
 |     check_all_var(Vector3(PI*Scalar(-0.9), singularBeta + epsilon, PI*Scalar(0.3))); | 
 |     check_all_var(Vector3(PI*Scalar(-0.6), singularBeta + Scalar(1.5)*epsilon, PI*Scalar(0.3))); | 
 |     check_all_var(Vector3(PI*Scalar(-0.5), singularBeta + 2*epsilon, PI*Scalar(0.4))); | 
 |     check_all_var(Vector3(PI*Scalar(0.9), singularBeta + epsilon, Scalar(0.8)*PI)); | 
 |   } | 
 |    | 
 |   // This one for sanity, it had a problem with near pole cases in float scalar. | 
 |   check_all_var(Vector3(PI*Scalar(0.8), singularBeta - Scalar(1E-6), Scalar(0.9)*PI)); | 
 | } | 
 |  | 
 | template<typename Scalar> void eulerangles_manual() | 
 | { | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef Matrix<Scalar,Dynamic,1> VectorX; | 
 |   const Vector3 Zero = Vector3::Zero(); | 
 |   const Scalar PI = Scalar(EIGEN_PI); | 
 |    | 
 |   check_all_var(Zero); | 
 |    | 
 |   // singular cases | 
 |   check_singular_cases(PI/2); | 
 |   check_singular_cases(-PI/2); | 
 |    | 
 |   check_singular_cases(Scalar(0)); | 
 |   check_singular_cases(Scalar(-0)); | 
 |    | 
 |   check_singular_cases(PI); | 
 |   check_singular_cases(-PI); | 
 |    | 
 |   // non-singular cases | 
 |   VectorX alpha = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI); | 
 |   VectorX beta =  VectorX::LinSpaced(20, Scalar(-0.49) * PI, Scalar(0.49) * PI); | 
 |   VectorX gamma = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI); | 
 |   for (int i = 0; i < alpha.size(); ++i) { | 
 |     for (int j = 0; j < beta.size(); ++j) { | 
 |       for (int k = 0; k < gamma.size(); ++k) { | 
 |         check_all_var(Vector3(alpha(i), beta(j), gamma(k))); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template<typename Scalar> void eulerangles_rand() | 
 | { | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef Array<Scalar,3,1> Array3; | 
 |   typedef Quaternion<Scalar> Quaternionx; | 
 |   typedef AngleAxis<Scalar> AngleAxisType; | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
 |   Quaternionx q1; | 
 |   q1 = AngleAxisType(a, Vector3::Random().normalized()); | 
 |   Matrix3 m; | 
 |   m = q1; | 
 |    | 
 |   Vector3 ea = m.eulerAngles(0,1,2); | 
 |   check_all_var(ea); | 
 |   ea = m.eulerAngles(0,1,0); | 
 |   check_all_var(ea); | 
 |    | 
 |   // Check with purely random Quaternion: | 
 |   q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); | 
 |   m = q1; | 
 |   ea = m.eulerAngles(0,1,2); | 
 |   check_all_var(ea); | 
 |   ea = m.eulerAngles(0,1,0); | 
 |   check_all_var(ea); | 
 |    | 
 |   // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi]. | 
 |   ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea[1] = 0; | 
 |   check_all_var(ea); | 
 |    | 
 |   ea.head(2).setZero(); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea.setZero(); | 
 |   check_all_var(ea); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(EulerAngles) | 
 | { | 
 |   // Simple cast test | 
 |   EulerAnglesXYZd onesEd(1, 1, 1); | 
 |   EulerAnglesXYZf onesEf = onesEd.cast<float>(); | 
 |   VERIFY_IS_APPROX(onesEd, onesEf.cast<double>()); | 
 |  | 
 |   // Simple Construction from Vector3 test | 
 |   VERIFY_IS_APPROX(onesEd, EulerAnglesXYZd(Vector3d::Ones())); | 
 |    | 
 |   CALL_SUBTEST_1( eulerangles_manual<float>() ); | 
 |   CALL_SUBTEST_2( eulerangles_manual<double>() ); | 
 |    | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_3( eulerangles_rand<float>() ); | 
 |     CALL_SUBTEST_4( eulerangles_rand<double>() ); | 
 |   } | 
 |    | 
 |   // TODO: Add tests for auto diff | 
 |   // TODO: Add tests for complex numbers | 
 | } |