|   | 
 | // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012  Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_ORDERING_H | 
 | #define EIGEN_ORDERING_H | 
 |  | 
 | namespace Eigen { | 
 |    | 
 | #include "Eigen_Colamd.h" | 
 |  | 
 | namespace internal { | 
 |      | 
 | /** \internal | 
 |   * \ingroup OrderingMethods_Module | 
 |   * \param[in] A the input non-symmetric matrix | 
 |   * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A. | 
 |   * FIXME: The values should not be considered here | 
 |   */ | 
 | template<typename MatrixType>  | 
 | void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat) | 
 | { | 
 |   MatrixType C; | 
 |   C = A.transpose(); // NOTE: Could be  costly | 
 |   for (int i = 0; i < C.rows(); i++)  | 
 |   { | 
 |       for (typename MatrixType::InnerIterator it(C, i); it; ++it) | 
 |         it.valueRef() = typename MatrixType::Scalar(0); | 
 |   } | 
 |   symmat = C + A; | 
 | } | 
 |      | 
 | } | 
 |  | 
 | /** \ingroup OrderingMethods_Module | 
 |   * \class AMDOrdering | 
 |   * | 
 |   * Functor computing the \em approximate \em minimum \em degree ordering | 
 |   * If the matrix is not structurally symmetric, an ordering of A^T+A is computed | 
 |   * \tparam  StorageIndex The type of indices of the matrix  | 
 |   * \sa COLAMDOrdering | 
 |   */ | 
 | template <typename StorageIndex> | 
 | class AMDOrdering | 
 | { | 
 |   public: | 
 |     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
 |      | 
 |     /** Compute the permutation vector from a sparse matrix | 
 |      * This routine is much faster if the input matrix is column-major      | 
 |      */ | 
 |     template <typename MatrixType> | 
 |     void operator()(const MatrixType& mat, PermutationType& perm) | 
 |     { | 
 |       // Compute the symmetric pattern | 
 |       SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm; | 
 |       internal::ordering_helper_at_plus_a(mat,symm);  | 
 |      | 
 |       // Call the AMD routine  | 
 |       //m_mat.prune(keep_diag()); | 
 |       internal::minimum_degree_ordering(symm, perm); | 
 |     } | 
 |      | 
 |     /** Compute the permutation with a selfadjoint matrix */ | 
 |     template <typename SrcType, unsigned int SrcUpLo>  | 
 |     void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm) | 
 |     {  | 
 |       SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat; | 
 |        | 
 |       // Call the AMD routine  | 
 |       // m_mat.prune(keep_diag()); //Remove the diagonal elements  | 
 |       internal::minimum_degree_ordering(C, perm); | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup OrderingMethods_Module | 
 |   * \class NaturalOrdering | 
 |   * | 
 |   * Functor computing the natural ordering (identity) | 
 |   *  | 
 |   * \note Returns an empty permutation matrix | 
 |   * \tparam  StorageIndex The type of indices of the matrix  | 
 |   */ | 
 | template <typename StorageIndex> | 
 | class NaturalOrdering | 
 | { | 
 |   public: | 
 |     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
 |      | 
 |     /** Compute the permutation vector from a column-major sparse matrix */ | 
 |     template <typename MatrixType> | 
 |     void operator()(const MatrixType& /*mat*/, PermutationType& perm) | 
 |     { | 
 |       perm.resize(0);  | 
 |     } | 
 |      | 
 | }; | 
 |  | 
 | /** \ingroup OrderingMethods_Module | 
 |   * \class COLAMDOrdering | 
 |   * | 
 |   * \tparam  StorageIndex The type of indices of the matrix  | 
 |   *  | 
 |   * Functor computing the \em column \em approximate \em minimum \em degree ordering  | 
 |   * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). | 
 |   */ | 
 | template<typename StorageIndex> | 
 | class COLAMDOrdering | 
 | { | 
 |   public: | 
 |     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;  | 
 |     typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; | 
 |      | 
 |     /** Compute the permutation vector \a perm form the sparse matrix \a mat | 
 |       * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). | 
 |       */ | 
 |     template <typename MatrixType> | 
 |     void operator() (const MatrixType& mat, PermutationType& perm) | 
 |     { | 
 |       eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering"); | 
 |        | 
 |       StorageIndex m = StorageIndex(mat.rows()); | 
 |       StorageIndex n = StorageIndex(mat.cols()); | 
 |       StorageIndex nnz = StorageIndex(mat.nonZeros()); | 
 |       // Get the recommended value of Alen to be used by colamd | 
 |       StorageIndex Alen = internal::Colamd::recommended(nnz, m, n);  | 
 |       // Set the default parameters | 
 |       double knobs [internal::Colamd::NKnobs];  | 
 |       StorageIndex stats [internal::Colamd::NStats]; | 
 |       internal::Colamd::set_defaults(knobs); | 
 |        | 
 |       IndexVector p(n+1), A(Alen);  | 
 |       for(StorageIndex i=0; i <= n; i++)   p(i) = mat.outerIndexPtr()[i]; | 
 |       for(StorageIndex i=0; i < nnz; i++)  A(i) = mat.innerIndexPtr()[i]; | 
 |       // Call Colamd routine to compute the ordering  | 
 |       StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats);  | 
 |       EIGEN_UNUSED_VARIABLE(info); | 
 |       eigen_assert( info && "COLAMD failed " ); | 
 |        | 
 |       perm.resize(n); | 
 |       for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i; | 
 |     } | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif |