| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SPARSEASSIGN_H | 
 | #define EIGEN_SPARSEASSIGN_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | template<typename Derived>     | 
 | template<typename OtherDerived> | 
 | Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other) | 
 | { | 
 |   internal::call_assignment_no_alias(derived(), other.derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<typename Derived> | 
 | template<typename OtherDerived> | 
 | Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other) | 
 | { | 
 |   // TODO use the evaluator mechanism | 
 |   other.evalTo(derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<typename Derived> | 
 | template<typename OtherDerived> | 
 | inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other) | 
 | { | 
 |   // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine | 
 |   internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> > | 
 |           ::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<typename Derived> | 
 | inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other) | 
 | { | 
 |   internal::call_assignment_no_alias(derived(), other.derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<> | 
 | struct storage_kind_to_evaluator_kind<Sparse> { | 
 |   typedef IteratorBased Kind; | 
 | }; | 
 |  | 
 | template<> | 
 | struct storage_kind_to_shape<Sparse> { | 
 |   typedef SparseShape Shape; | 
 | }; | 
 |  | 
 | struct Sparse2Sparse {}; | 
 | struct Sparse2Dense  {}; | 
 |  | 
 | template<> struct AssignmentKind<SparseShape, SparseShape>           { typedef Sparse2Sparse Kind; }; | 
 | template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; }; | 
 | template<> struct AssignmentKind<DenseShape,  SparseShape>           { typedef Sparse2Dense  Kind; }; | 
 | template<> struct AssignmentKind<DenseShape,  SparseTriangularShape> { typedef Sparse2Dense  Kind; }; | 
 |  | 
 |  | 
 | template<typename DstXprType, typename SrcXprType> | 
 | void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) | 
 | { | 
 |   typedef typename DstXprType::Scalar Scalar; | 
 |   typedef internal::evaluator<DstXprType> DstEvaluatorType; | 
 |   typedef internal::evaluator<SrcXprType> SrcEvaluatorType; | 
 |  | 
 |   SrcEvaluatorType srcEvaluator(src); | 
 |  | 
 |   const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); | 
 |   const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); | 
 |   if ((!transpose) && src.isRValue()) | 
 |   { | 
 |     // eval without temporary | 
 |     dst.resize(src.rows(), src.cols()); | 
 |     dst.setZero(); | 
 |     dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); | 
 |     for (Index j=0; j<outerEvaluationSize; ++j) | 
 |     { | 
 |       dst.startVec(j); | 
 |       for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) | 
 |       { | 
 |         Scalar v = it.value(); | 
 |         dst.insertBackByOuterInner(j,it.index()) = v; | 
 |       } | 
 |     } | 
 |     dst.finalize(); | 
 |   } | 
 |   else | 
 |   { | 
 |     // eval through a temporary | 
 |     eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || | 
 |               (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && | 
 |               "the transpose operation is supposed to be handled in SparseMatrix::operator="); | 
 |  | 
 |     enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; | 
 |  | 
 |      | 
 |     DstXprType temp(src.rows(), src.cols()); | 
 |  | 
 |     temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); | 
 |     for (Index j=0; j<outerEvaluationSize; ++j) | 
 |     { | 
 |       temp.startVec(j); | 
 |       for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) | 
 |       { | 
 |         Scalar v = it.value(); | 
 |         temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v; | 
 |       } | 
 |     } | 
 |     temp.finalize(); | 
 |  | 
 |     dst = temp.markAsRValue(); | 
 |   } | 
 | } | 
 |  | 
 | // Generic Sparse to Sparse assignment | 
 | template< typename DstXprType, typename SrcXprType, typename Functor> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse> | 
 | { | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) | 
 |   { | 
 |     assign_sparse_to_sparse(dst.derived(), src.derived()); | 
 |   } | 
 | }; | 
 |  | 
 | // Generic Sparse to Dense assignment | 
 | template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak> | 
 | { | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) | 
 |   { | 
 |     if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value) | 
 |       dst.setZero(); | 
 |      | 
 |     internal::evaluator<SrcXprType> srcEval(src); | 
 |     resize_if_allowed(dst, src, func); | 
 |     internal::evaluator<DstXprType> dstEval(dst); | 
 |      | 
 |     const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols(); | 
 |     for (Index j=0; j<outerEvaluationSize; ++j) | 
 |       for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i) | 
 |         func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); | 
 |   } | 
 | }; | 
 |  | 
 | // Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense | 
 | template<typename DstXprType, typename Func1, typename Func2> | 
 | struct assignment_from_dense_op_sparse | 
 | { | 
 |   template<typename SrcXprType, typename InitialFunc> | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 |   void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) | 
 |   { | 
 |     #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN | 
 |     EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN | 
 |     #endif | 
 |  | 
 |     call_assignment_no_alias(dst, src.lhs(), Func1()); | 
 |     call_assignment_no_alias(dst, src.rhs(), Func2()); | 
 |   } | 
 |  | 
 |   // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse; | 
 |   template<typename Lhs, typename Rhs, typename Scalar> | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 |   typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type | 
 |   run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src, | 
 |       const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) | 
 |   { | 
 |     #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN | 
 |     EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN | 
 |     #endif | 
 |  | 
 |     // Apply the dense matrix first, then the sparse one. | 
 |     call_assignment_no_alias(dst, src.rhs(), Func1()); | 
 |     call_assignment_no_alias(dst, src.lhs(), Func2()); | 
 |   } | 
 |  | 
 |   // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse; | 
 |   template<typename Lhs, typename Rhs, typename Scalar> | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 |   typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type | 
 |   run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src, | 
 |       const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) | 
 |   { | 
 |     #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN | 
 |     EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN | 
 |     #endif | 
 |  | 
 |     // Apply the dense matrix first, then the sparse one. | 
 |     call_assignment_no_alias(dst, -src.rhs(), Func1()); | 
 |     call_assignment_no_alias(dst,  src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>()); | 
 |   } | 
 | }; | 
 |  | 
 | #define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \ | 
 |   template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \ | 
 |   struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \ | 
 |                     Sparse2Dense, \ | 
 |                     typename internal::enable_if<   internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \ | 
 |                                                  || internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \ | 
 |     : assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \ | 
 |   {} | 
 |  | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op,    scalar_sum_op,add_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op); | 
 |  | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op,    scalar_difference_op,sub_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op); | 
 |  | 
 |  | 
 | // Specialization for "dst = dec.solve(rhs)" | 
 | // NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error | 
 | template<typename DstXprType, typename DecType, typename RhsType, typename Scalar> | 
 | struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse> | 
 | { | 
 |   typedef Solve<DecType,RhsType> SrcXprType; | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &) | 
 |   { | 
 |     Index dstRows = src.rows(); | 
 |     Index dstCols = src.cols(); | 
 |     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) | 
 |       dst.resize(dstRows, dstCols); | 
 |  | 
 |     src.dec()._solve_impl(src.rhs(), dst); | 
 |   } | 
 | }; | 
 |  | 
 | struct Diagonal2Sparse {}; | 
 |  | 
 | template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; }; | 
 |  | 
 | template< typename DstXprType, typename SrcXprType, typename Functor> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse> | 
 | { | 
 |   typedef typename DstXprType::StorageIndex StorageIndex; | 
 |   typedef typename DstXprType::Scalar Scalar; | 
 |  | 
 |   template<int Options, typename AssignFunc> | 
 |   static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func) | 
 |   { dst.assignDiagonal(src.diagonal(), func); } | 
 |    | 
 |   template<typename DstDerived> | 
 |   static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) | 
 |   { dst.derived().diagonal() = src.diagonal(); } | 
 |    | 
 |   template<typename DstDerived> | 
 |   static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) | 
 |   { dst.derived().diagonal() += src.diagonal(); } | 
 |    | 
 |   template<typename DstDerived> | 
 |   static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) | 
 |   { dst.derived().diagonal() -= src.diagonal(); } | 
 | }; | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_SPARSEASSIGN_H |