| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef SVD_DEFAULT | 
 | #error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h | 
 | #endif | 
 |  | 
 | #ifndef SVD_FOR_MIN_NORM | 
 | #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h | 
 | #endif | 
 |  | 
 | #include "svd_fill.h" | 
 | #include "solverbase.h" | 
 |  | 
 | // Check that the matrix m is properly reconstructed and that the U and V factors are unitary | 
 | // The SVD must have already been computed. | 
 | template<typename SvdType, typename MatrixType> | 
 | void svd_check_full(const MatrixType& m, const SvdType& svd) | 
 | { | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; | 
 |  | 
 |   MatrixType sigma = MatrixType::Zero(rows,cols); | 
 |   sigma.diagonal() = svd.singularValues().template cast<Scalar>(); | 
 |   MatrixUType u = svd.matrixU(); | 
 |   MatrixVType v = svd.matrixV(); | 
 |   RealScalar scaling = m.cwiseAbs().maxCoeff(); | 
 |   if(scaling<(std::numeric_limits<RealScalar>::min)()) | 
 |   { | 
 |     VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); | 
 |   } | 
 |   else | 
 |   { | 
 |     VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint()); | 
 |   } | 
 |   VERIFY_IS_UNITARY(u); | 
 |   VERIFY_IS_UNITARY(v); | 
 | } | 
 |  | 
 | // Compare partial SVD defined by computationOptions to a full SVD referenceSvd | 
 | template<typename SvdType, typename MatrixType> | 
 | void svd_compare_to_full(const MatrixType& m, | 
 |                          unsigned int computationOptions, | 
 |                          const SvdType& referenceSvd) | 
 | { | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |   Index diagSize = (std::min)(rows, cols); | 
 |   RealScalar prec = test_precision<RealScalar>(); | 
 |  | 
 |   SvdType svd(m, computationOptions); | 
 |  | 
 |   VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); | 
 |    | 
 |   if(computationOptions & (ComputeFullV|ComputeThinV)) | 
 |   { | 
 |     VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) ); | 
 |     VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(), | 
 |                       referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint()); | 
 |   } | 
 |    | 
 |   if(computationOptions & (ComputeFullU|ComputeThinU)) | 
 |   { | 
 |     VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) ); | 
 |     VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(), | 
 |                       referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint()); | 
 |   } | 
 |    | 
 |   // The following checks are not critical. | 
 |   // For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used | 
 |   // and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float. | 
 |   ++g_test_level; | 
 |   if(computationOptions & ComputeFullU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); | 
 |   if(computationOptions & ComputeThinU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); | 
 |   if(computationOptions & ComputeFullV)  VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs()); | 
 |   if(computationOptions & ComputeThinV)  VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); | 
 |   --g_test_level; | 
 | } | 
 |  | 
 | // | 
 | template<typename SvdType, typename MatrixType> | 
 | void svd_least_square(const MatrixType& m, unsigned int computationOptions) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; | 
 |  | 
 |   RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); | 
 |   SvdType svd(m, computationOptions); | 
 |  | 
 |        if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8); | 
 |   else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(2e-4); | 
 |  | 
 |   SolutionType x = svd.solve(rhs); | 
 |     | 
 |   RealScalar residual = (m*x-rhs).norm(); | 
 |   RealScalar rhs_norm = rhs.norm(); | 
 |   if(!test_isMuchSmallerThan(residual,rhs.norm())) | 
 |   { | 
 |     // ^^^ If the residual is very small, then we have an exact solution, so we are already good. | 
 |      | 
 |     // evaluate normal equation which works also for least-squares solutions | 
 |     if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size()) | 
 |     { | 
 |       using std::sqrt; | 
 |       // This test is not stable with single precision. | 
 |       // This is probably because squaring m signicantly affects the precision.       | 
 |       if(internal::is_same<RealScalar,float>::value) ++g_test_level; | 
 |        | 
 |       VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs); | 
 |        | 
 |       if(internal::is_same<RealScalar,float>::value) --g_test_level; | 
 |     } | 
 |      | 
 |     // Check that there is no significantly better solution in the neighborhood of x | 
 |     for(Index k=0;k<x.rows();++k) | 
 |     { | 
 |       using std::abs; | 
 |        | 
 |       SolutionType y(x); | 
 |       y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k); | 
 |       RealScalar residual_y = (m*y-rhs).norm(); | 
 |       VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y ); | 
 |       if(internal::is_same<RealScalar,float>::value) ++g_test_level; | 
 |       VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); | 
 |       if(internal::is_same<RealScalar,float>::value) --g_test_level; | 
 |        | 
 |       y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k); | 
 |       residual_y = (m*y-rhs).norm(); | 
 |       VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y ); | 
 |       if(internal::is_same<RealScalar,float>::value) ++g_test_level; | 
 |       VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); | 
 |       if(internal::is_same<RealScalar,float>::value) --g_test_level; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // check minimal norm solutions, the inoput matrix m is only used to recover problem size | 
 | template<typename MatrixType> | 
 | void svd_min_norm(const MatrixType& m, unsigned int computationOptions) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   Index cols = m.cols(); | 
 |  | 
 |   enum { | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; | 
 |  | 
 |   // generate a full-rank m x n problem with m<n | 
 |   enum { | 
 |     RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1, | 
 |     RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1 | 
 |   }; | 
 |   typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2; | 
 |   typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2; | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T; | 
 |   Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2); | 
 |   MatrixType2 m2(rank,cols); | 
 |   int guard = 0; | 
 |   do { | 
 |     m2.setRandom(); | 
 |   } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10); | 
 |   VERIFY(guard<10); | 
 |  | 
 |   RhsType2 rhs2 = RhsType2::Random(rank); | 
 |   // use QR to find a reference minimal norm solution | 
 |   HouseholderQR<MatrixType2T> qr(m2.adjoint()); | 
 |   Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2); | 
 |   tmp.conservativeResize(cols); | 
 |   tmp.tail(cols-rank).setZero(); | 
 |   SolutionType x21 = qr.householderQ() * tmp; | 
 |   // now check with SVD | 
 |   SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions); | 
 |   SolutionType x22 = svd2.solve(rhs2); | 
 |   VERIFY_IS_APPROX(m2*x21, rhs2); | 
 |   VERIFY_IS_APPROX(m2*x22, rhs2); | 
 |   VERIFY_IS_APPROX(x21, x22); | 
 |  | 
 |   // Now check with a rank deficient matrix | 
 |   typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3; | 
 |   typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3; | 
 |   Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3); | 
 |   Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank); | 
 |   MatrixType3 m3 = C * m2; | 
 |   RhsType3 rhs3 = C * rhs2; | 
 |   SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions); | 
 |   SolutionType x3 = svd3.solve(rhs3); | 
 |   VERIFY_IS_APPROX(m3*x3, rhs3); | 
 |   VERIFY_IS_APPROX(m3*x21, rhs3); | 
 |   VERIFY_IS_APPROX(m2*x3, rhs2); | 
 |   VERIFY_IS_APPROX(x21, x3); | 
 | } | 
 |  | 
 | template<typename MatrixType, typename SolverType> | 
 | void svd_test_solvers(const MatrixType& m, const SolverType& solver) { | 
 |     Index rows, cols, cols2; | 
 |  | 
 |     rows = m.rows(); | 
 |     cols = m.cols(); | 
 |  | 
 |     if(MatrixType::ColsAtCompileTime==Dynamic) | 
 |     { | 
 |       cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE); | 
 |     } | 
 |     else | 
 |     { | 
 |       cols2 = cols; | 
 |     } | 
 |     typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType; | 
 |     check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2); | 
 | } | 
 |  | 
 | // Check full, compare_to_full, least_square, and min_norm for all possible compute-options | 
 | template<typename SvdType, typename MatrixType> | 
 | void svd_test_all_computation_options(const MatrixType& m, bool full_only) | 
 | { | 
 | //   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols()) | 
 | //     return; | 
 |   STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value )); | 
 |  | 
 |   SvdType fullSvd(m, ComputeFullU|ComputeFullV); | 
 |   CALL_SUBTEST(( svd_check_full(m, fullSvd) )); | 
 |   CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) )); | 
 |   CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) )); | 
 |    | 
 |   #if defined __INTEL_COMPILER | 
 |   // remark #111: statement is unreachable | 
 |   #pragma warning disable 111 | 
 |   #endif | 
 |  | 
 |   svd_test_solvers(m, fullSvd); | 
 |  | 
 |   if(full_only) | 
 |     return; | 
 |  | 
 |   CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) )); | 
 |   CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) )); | 
 |   CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) )); | 
 |  | 
 |   if (MatrixType::ColsAtCompileTime == Dynamic) { | 
 |     // thin U/V are only available with dynamic number of columns | 
 |     CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) )); | 
 |     CALL_SUBTEST(( svd_compare_to_full(m,              ComputeThinV, fullSvd) )); | 
 |     CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) )); | 
 |     CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU             , fullSvd) )); | 
 |     CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) )); | 
 |      | 
 |     CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) )); | 
 |     CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) )); | 
 |     CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) )); | 
 |  | 
 |     CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) )); | 
 |     CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) )); | 
 |     CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) )); | 
 |  | 
 |     // test reconstruction | 
 |     Index diagSize = (std::min)(m.rows(), m.cols()); | 
 |     SvdType svd(m, ComputeThinU | ComputeThinV); | 
 |     VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // work around stupid msvc error when constructing at compile time an expression that involves | 
 | // a division by zero, even if the numeric type has floating point | 
 | template<typename Scalar> | 
 | EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); } | 
 |  | 
 | // workaround aggressive optimization in ICC | 
 | template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; } | 
 |  | 
 | // all this function does is verify we don't iterate infinitely on nan/inf values | 
 | template<typename SvdType, typename MatrixType> | 
 | void svd_inf_nan() | 
 | { | 
 |   SvdType svd; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   Scalar some_inf = Scalar(1) / zero<Scalar>(); | 
 |   VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); | 
 |   svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV); | 
 |  | 
 |   Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); | 
 |   VERIFY(nan != nan); | 
 |   svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV); | 
 |  | 
 |   MatrixType m = MatrixType::Zero(10,10); | 
 |   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; | 
 |   svd.compute(m, ComputeFullU | ComputeFullV); | 
 |  | 
 |   m = MatrixType::Zero(10,10); | 
 |   m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan; | 
 |   svd.compute(m, ComputeFullU | ComputeFullV); | 
 |    | 
 |   // regression test for bug 791 | 
 |   m.resize(3,3); | 
 |   m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5, | 
 |        0,   -0.5,                             0, | 
 |        nan,  0,                               0; | 
 |   svd.compute(m, ComputeFullU | ComputeFullV); | 
 |    | 
 |   m.resize(4,4); | 
 |   m <<  1, 0, 0, 0, | 
 |         0, 3, 1, 2e-308, | 
 |         1, 0, 1, nan, | 
 |         0, nan, nan, 0; | 
 |   svd.compute(m, ComputeFullU | ComputeFullV); | 
 | } | 
 |  | 
 | // Regression test for bug 286: JacobiSVD loops indefinitely with some | 
 | // matrices containing denormal numbers. | 
 | template<typename> | 
 | void svd_underoverflow() | 
 | { | 
 | #if defined __INTEL_COMPILER | 
 | // shut up warning #239: floating point underflow | 
 | #pragma warning push | 
 | #pragma warning disable 239 | 
 | #endif | 
 |   Matrix2d M; | 
 |   M << -7.90884e-313, -4.94e-324, | 
 |                  0, 5.60844e-313; | 
 |   SVD_DEFAULT(Matrix2d) svd; | 
 |   svd.compute(M,ComputeFullU|ComputeFullV); | 
 |   CALL_SUBTEST( svd_check_full(M,svd) ); | 
 |    | 
 |   // Check all 2x2 matrices made with the following coefficients: | 
 |   VectorXd value_set(9); | 
 |   value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223; | 
 |   Array4i id(0,0,0,0); | 
 |   int k = 0; | 
 |   do | 
 |   { | 
 |     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3)); | 
 |     svd.compute(M,ComputeFullU|ComputeFullV); | 
 |     CALL_SUBTEST( svd_check_full(M,svd) ); | 
 |  | 
 |     id(k)++; | 
 |     if(id(k)>=value_set.size()) | 
 |     { | 
 |       while(k<3 && id(k)>=value_set.size()) id(++k)++; | 
 |       id.head(k).setZero(); | 
 |       k=0; | 
 |     } | 
 |  | 
 |   } while((id<int(value_set.size())).all()); | 
 |    | 
 | #if defined __INTEL_COMPILER | 
 | #pragma warning pop | 
 | #endif | 
 |    | 
 |   // Check for overflow: | 
 |   Matrix3d M3; | 
 |   M3 << 4.4331978442502944e+307, -5.8585363752028680e+307,  6.4527017443412964e+307, | 
 |         3.7841695601406358e+307,  2.4331702789740617e+306, -3.5235707140272905e+307, | 
 |        -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307; | 
 |  | 
 |   SVD_DEFAULT(Matrix3d) svd3; | 
 |   svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely | 
 |   CALL_SUBTEST( svd_check_full(M3,svd3) ); | 
 | } | 
 |  | 
 | // void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) | 
 |  | 
 | template<typename MatrixType> | 
 | void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) ) | 
 | { | 
 |   MatrixType M; | 
 |   VectorXd value_set(3); | 
 |   value_set << 0, 1, -1; | 
 |   Array4i id(0,0,0,0); | 
 |   int k = 0; | 
 |   do | 
 |   { | 
 |     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3)); | 
 |      | 
 |     cb(M,false); | 
 |      | 
 |     id(k)++; | 
 |     if(id(k)>=value_set.size()) | 
 |     { | 
 |       while(k<3 && id(k)>=value_set.size()) id(++k)++; | 
 |       id.head(k).setZero(); | 
 |       k=0; | 
 |     } | 
 |      | 
 |   } while((id<int(value_set.size())).all()); | 
 | } | 
 |  | 
 | template<typename> | 
 | void svd_preallocate() | 
 | { | 
 |   Vector3f v(3.f, 2.f, 1.f); | 
 |   MatrixXf m = v.asDiagonal(); | 
 |  | 
 |   internal::set_is_malloc_allowed(false); | 
 |   VERIFY_RAISES_ASSERT(VectorXf tmp(10);) | 
 |   SVD_DEFAULT(MatrixXf) svd; | 
 |   internal::set_is_malloc_allowed(true); | 
 |   svd.compute(m); | 
 |   VERIFY_IS_APPROX(svd.singularValues(), v); | 
 |  | 
 |   SVD_DEFAULT(MatrixXf) svd2(3,3); | 
 |   internal::set_is_malloc_allowed(false); | 
 |   svd2.compute(m); | 
 |   internal::set_is_malloc_allowed(true); | 
 |   VERIFY_IS_APPROX(svd2.singularValues(), v); | 
 |   VERIFY_RAISES_ASSERT(svd2.matrixU()); | 
 |   VERIFY_RAISES_ASSERT(svd2.matrixV()); | 
 |   svd2.compute(m, ComputeFullU | ComputeFullV); | 
 |   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); | 
 |   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); | 
 |   internal::set_is_malloc_allowed(false); | 
 |   svd2.compute(m); | 
 |   internal::set_is_malloc_allowed(true); | 
 |  | 
 |   SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV); | 
 |   internal::set_is_malloc_allowed(false); | 
 |   svd2.compute(m); | 
 |   internal::set_is_malloc_allowed(true); | 
 |   VERIFY_IS_APPROX(svd2.singularValues(), v); | 
 |   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); | 
 |   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); | 
 |   internal::set_is_malloc_allowed(false); | 
 |   svd2.compute(m, ComputeFullU|ComputeFullV); | 
 |   internal::set_is_malloc_allowed(true); | 
 | } | 
 |  | 
 | template<typename SvdType,typename MatrixType>  | 
 | void svd_verify_assert(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; | 
 |   RhsType rhs(rows); | 
 |   SvdType svd; | 
 |   VERIFY_RAISES_ASSERT(svd.matrixU()) | 
 |   VERIFY_RAISES_ASSERT(svd.singularValues()) | 
 |   VERIFY_RAISES_ASSERT(svd.matrixV()) | 
 |   VERIFY_RAISES_ASSERT(svd.solve(rhs)) | 
 |   VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs)) | 
 |   VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs)) | 
 |   MatrixType a = MatrixType::Zero(rows, cols); | 
 |   a.setZero(); | 
 |   svd.compute(a, 0); | 
 |   VERIFY_RAISES_ASSERT(svd.matrixU()) | 
 |   VERIFY_RAISES_ASSERT(svd.matrixV()) | 
 |   svd.singularValues(); | 
 |   VERIFY_RAISES_ASSERT(svd.solve(rhs)) | 
 |      | 
 |   if (ColsAtCompileTime == Dynamic) | 
 |   { | 
 |     svd.compute(a, ComputeThinU); | 
 |     svd.matrixU(); | 
 |     VERIFY_RAISES_ASSERT(svd.matrixV()) | 
 |     VERIFY_RAISES_ASSERT(svd.solve(rhs)) | 
 |     svd.compute(a, ComputeThinV); | 
 |     svd.matrixV(); | 
 |     VERIFY_RAISES_ASSERT(svd.matrixU()) | 
 |     VERIFY_RAISES_ASSERT(svd.solve(rhs)) | 
 |   } | 
 |   else | 
 |   { | 
 |     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU)) | 
 |     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV)) | 
 |   } | 
 | } | 
 |  | 
 | #undef SVD_DEFAULT | 
 | #undef SVD_FOR_MIN_NORM |