|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_POLYNOMIAL_UTILS_H | 
|  | #define EIGEN_POLYNOMIAL_UTILS_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns the evaluation of the polynomial at x using Horner algorithm. | 
|  | * | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | * \param[in] x : the value to evaluate the polynomial at. | 
|  | * | 
|  | * \note for stability: | 
|  | *   \f$ |x| \le 1 \f$ | 
|  | */ | 
|  | template <typename Polynomials, typename T> | 
|  | inline | 
|  | T poly_eval_horner( const Polynomials& poly, const T& x ) | 
|  | { | 
|  | T val=poly[poly.size()-1]; | 
|  | for(DenseIndex i=poly.size()-2; i>=0; --i ){ | 
|  | val = val*x + poly[i]; } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns the evaluation of the polynomial at x using stabilized Horner algorithm. | 
|  | * | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | * \param[in] x : the value to evaluate the polynomial at. | 
|  | */ | 
|  | template <typename Polynomials, typename T> | 
|  | inline | 
|  | T poly_eval( const Polynomials& poly, const T& x ) | 
|  | { | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  |  | 
|  | if( numext::abs2( x ) <= Real(1) ){ | 
|  | return poly_eval_horner( poly, x ); } | 
|  | else | 
|  | { | 
|  | T val=poly[0]; | 
|  | T inv_x = T(1)/x; | 
|  | for( DenseIndex i=1; i<poly.size(); ++i ){ | 
|  | val = val*inv_x + poly[i]; } | 
|  |  | 
|  | return numext::pow(x,(T)(poly.size()-1)) * val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns a maximum bound for the absolute value of any root of the polynomial. | 
|  | * | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | * | 
|  | *  \pre | 
|  | *   the leading coefficient of the input polynomial poly must be non zero | 
|  | */ | 
|  | template <typename Polynomial> | 
|  | inline | 
|  | typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly ) | 
|  | { | 
|  | using std::abs; | 
|  | typedef typename Polynomial::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | eigen_assert( Scalar(0) != poly[poly.size()-1] ); | 
|  | const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1]; | 
|  | Real cb(0); | 
|  |  | 
|  | for( DenseIndex i=0; i<poly.size()-1; ++i ){ | 
|  | cb += abs(poly[i]*inv_leading_coeff); } | 
|  | return cb + Real(1); | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns a minimum bound for the absolute value of any non zero root of the polynomial. | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | */ | 
|  | template <typename Polynomial> | 
|  | inline | 
|  | typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly ) | 
|  | { | 
|  | using std::abs; | 
|  | typedef typename Polynomial::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | DenseIndex i=0; | 
|  | while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; } | 
|  | if( poly.size()-1 == i ){ | 
|  | return Real(1); } | 
|  |  | 
|  | const Scalar inv_min_coeff = Scalar(1)/poly[i]; | 
|  | Real cb(1); | 
|  | for( DenseIndex j=i+1; j<poly.size(); ++j ){ | 
|  | cb += abs(poly[j]*inv_min_coeff); } | 
|  | return Real(1)/cb; | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * Given the roots of a polynomial compute the coefficients in the | 
|  | * monomial basis of the monic polynomial with same roots and minimal degree. | 
|  | * If RootVector is a vector of complexes, Polynomial should also be a vector | 
|  | * of complexes. | 
|  | * \param[in] rv : a vector containing the roots of a polynomial. | 
|  | * \param[out] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$. | 
|  | */ | 
|  | template <typename RootVector, typename Polynomial> | 
|  | void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly ) | 
|  | { | 
|  |  | 
|  | typedef typename Polynomial::Scalar Scalar; | 
|  |  | 
|  | poly.setZero( rv.size()+1 ); | 
|  | poly[0] = -rv[0]; poly[1] = Scalar(1); | 
|  | for( DenseIndex i=1; i< rv.size(); ++i ) | 
|  | { | 
|  | for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; } | 
|  | poly[0] = -rv[i]*poly[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_POLYNOMIAL_UTILS_H |