blob: 3d6655b539f887777f84b9f6d49ed245b503fe9c [file] [log] [blame]
// g++ -DNDEBUG -O3 -I.. benchCholesky.cpp -o benchCholesky && ./benchCholesky
// options:
// -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3
// -DEIGEN_DONT_VECTORIZE
// -msse2
// -DREPEAT=100
// -DTRIES=10
// -DSCALAR=double
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Cholesky>
#include <bench/BenchUtil.h>
using namespace Eigen;
#ifndef REPEAT
#define REPEAT 10000
#endif
#ifndef TRIES
#define TRIES 10
#endif
typedef float Scalar;
template <typename MatrixType>
__attribute__((noinline)) void benchLLT(const MatrixType& m) {
int rows = m.rows();
int cols = m.cols();
double cost = 0;
for (int j = 0; j < rows; ++j) {
int r = std::max(rows - j - 1, 0);
cost += 2 * (r * j + r + j);
}
int repeats = (REPEAT * 1000) / (rows * rows);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
MatrixType a = MatrixType::Random(rows, cols);
SquareMatrixType covMat = a * a.adjoint();
BenchTimer timerNoSqrt, timerSqrt;
Scalar acc = 0;
int r = internal::random<int>(0, covMat.rows() - 1);
int c = internal::random<int>(0, covMat.cols() - 1);
for (int t = 0; t < TRIES; ++t) {
timerNoSqrt.start();
for (int k = 0; k < repeats; ++k) {
LDLT<SquareMatrixType> cholnosqrt(covMat);
acc += cholnosqrt.matrixL().coeff(r, c);
}
timerNoSqrt.stop();
}
for (int t = 0; t < TRIES; ++t) {
timerSqrt.start();
for (int k = 0; k < repeats; ++k) {
LLT<SquareMatrixType> chol(covMat);
acc += chol.matrixL().coeff(r, c);
}
timerSqrt.stop();
}
if (MatrixType::RowsAtCompileTime == Dynamic)
std::cout << "dyn ";
else
std::cout << "fixed ";
std::cout << covMat.rows() << " \t" << (timerNoSqrt.best()) / repeats << "s "
<< "(" << 1e-9 * cost * repeats / timerNoSqrt.best() << " GFLOPS)\t" << (timerSqrt.best()) / repeats << "s "
<< "(" << 1e-9 * cost * repeats / timerSqrt.best() << " GFLOPS)\n";
#ifdef BENCH_GSL
if (MatrixType::RowsAtCompileTime == Dynamic) {
timerSqrt.reset();
gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(), covMat.cols());
gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(), covMat.cols());
eiToGsl(covMat, &gslCovMat);
for (int t = 0; t < TRIES; ++t) {
timerSqrt.start();
for (int k = 0; k < repeats; ++k) {
gsl_matrix_memcpy(gslCopy, gslCovMat);
gsl_linalg_cholesky_decomp(gslCopy);
acc += gsl_matrix_get(gslCopy, r, c);
}
timerSqrt.stop();
}
std::cout << " | \t" << timerSqrt.value() * REPEAT / repeats << "s";
gsl_matrix_free(gslCovMat);
}
#endif
std::cout << "\n";
// make sure the compiler does not optimize too much
if (acc == 123) std::cout << acc;
}
int main(int argc, char* argv[]) {
const int dynsizes[] = {4, 6, 8, 16, 24, 32, 49, 64, 128, 256, 512, 900, 1500, 0};
std::cout << "size LDLT LLT";
// #ifdef BENCH_GSL
// std::cout << " GSL (standard + double + ATLAS) ";
// #endif
std::cout << "\n";
for (int i = 0; dynsizes[i] > 0; ++i) benchLLT(Matrix<Scalar, Dynamic, Dynamic>(dynsizes[i], dynsizes[i]));
benchLLT(Matrix<Scalar, 2, 2>());
benchLLT(Matrix<Scalar, 3, 3>());
benchLLT(Matrix<Scalar, 4, 4>());
benchLLT(Matrix<Scalar, 5, 5>());
benchLLT(Matrix<Scalar, 6, 6>());
benchLLT(Matrix<Scalar, 7, 7>());
benchLLT(Matrix<Scalar, 8, 8>());
benchLLT(Matrix<Scalar, 12, 12>());
benchLLT(Matrix<Scalar, 16, 16>());
return 0;
}