| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // clang-format off |
| #include "main.h" |
| #include <Eigen/CXX11/Tensor> |
| // clang-format on |
| |
| using Eigen::internal::TensorBlockDescriptor; |
| using Eigen::internal::TensorExecutor; |
| |
| // -------------------------------------------------------------------------- // |
| // Utility functions to generate random tensors, blocks, and evaluate them. |
| |
| template <int NumDims> |
| static DSizes<Index, NumDims> RandomDims(Index min, Index max) { |
| DSizes<Index, NumDims> dims; |
| for (int i = 0; i < NumDims; ++i) { |
| dims[i] = internal::random<Index>(min, max); |
| } |
| return DSizes<Index, NumDims>(dims); |
| } |
| |
| // Block offsets and extents allows to construct a TensorSlicingOp corresponding |
| // to a TensorBlockDescriptor. |
| template <int NumDims> |
| struct TensorBlockParams { |
| DSizes<Index, NumDims> offsets; |
| DSizes<Index, NumDims> sizes; |
| TensorBlockDescriptor<NumDims, Index> desc; |
| }; |
| |
| template <int Layout, int NumDims> |
| static TensorBlockParams<NumDims> RandomBlock(DSizes<Index, NumDims> dims, Index min, Index max) { |
| // Choose random offsets and sizes along all tensor dimensions. |
| DSizes<Index, NumDims> offsets(RandomDims<NumDims>(min, max)); |
| DSizes<Index, NumDims> sizes(RandomDims<NumDims>(min, max)); |
| |
| // Make sure that offset + size do not overflow dims. |
| for (int i = 0; i < NumDims; ++i) { |
| offsets[i] = numext::mini(dims[i] - 1, offsets[i]); |
| sizes[i] = numext::mini(sizes[i], dims[i] - offsets[i]); |
| } |
| |
| Index offset = 0; |
| DSizes<Index, NumDims> strides = Eigen::internal::strides<Layout>(dims); |
| for (int i = 0; i < NumDims; ++i) { |
| offset += strides[i] * offsets[i]; |
| } |
| |
| return {offsets, sizes, TensorBlockDescriptor<NumDims, Index>(offset, sizes)}; |
| } |
| |
| // Generate block with block sizes skewed towards inner dimensions. This type of |
| // block is required for evaluating broadcast expressions. |
| template <int Layout, int NumDims> |
| static TensorBlockParams<NumDims> SkewedInnerBlock(DSizes<Index, NumDims> dims) { |
| using BlockMapper = internal::TensorBlockMapper<NumDims, Layout, Index>; |
| BlockMapper block_mapper( |
| dims, |
| {internal::TensorBlockShapeType::kSkewedInnerDims, internal::random<size_t>(1, dims.TotalSize()), {0, 0, 0}}); |
| |
| Index total_blocks = block_mapper.blockCount(); |
| Index block_index = internal::random<Index>(0, total_blocks - 1); |
| auto block = block_mapper.blockDescriptor(block_index); |
| DSizes<Index, NumDims> sizes = block.dimensions(); |
| |
| auto strides = internal::strides<Layout>(dims); |
| DSizes<Index, NumDims> offsets; |
| |
| // Compute offsets for the first block coefficient. |
| Index index = block.offset(); |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = index / strides[i]; |
| index -= idx * strides[i]; |
| offsets[i] = idx; |
| } |
| if (NumDims > 0) offsets[0] = index; |
| } else { |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = index / strides[i]; |
| index -= idx * strides[i]; |
| offsets[i] = idx; |
| } |
| if (NumDims > 0) offsets[NumDims - 1] = index; |
| } |
| |
| return {offsets, sizes, block}; |
| } |
| |
| template <int NumDims> |
| static TensorBlockParams<NumDims> FixedSizeBlock(DSizes<Index, NumDims> dims) { |
| DSizes<Index, NumDims> offsets; |
| for (int i = 0; i < NumDims; ++i) offsets[i] = 0; |
| |
| return {offsets, dims, TensorBlockDescriptor<NumDims, Index>(0, dims)}; |
| } |
| |
| inline Eigen::IndexList<Index, Eigen::type2index<1>> NByOne(Index n) { |
| Eigen::IndexList<Index, Eigen::type2index<1>> ret; |
| ret.set(0, n); |
| return ret; |
| } |
| inline Eigen::IndexList<Eigen::type2index<1>, Index> OneByM(Index m) { |
| Eigen::IndexList<Eigen::type2index<1>, Index> ret; |
| ret.set(1, m); |
| return ret; |
| } |
| |
| // -------------------------------------------------------------------------- // |
| // Verify that block expression evaluation produces the same result as a |
| // TensorSliceOp (reading a tensor block is same to taking a tensor slice). |
| |
| template <typename T, int NumDims, int Layout, typename Expression, typename GenBlockParams> |
| static void VerifyBlockEvaluator(Expression expr, GenBlockParams gen_block) { |
| using Device = DefaultDevice; |
| auto d = Device(); |
| |
| // Scratch memory allocator for block evaluation. |
| typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; |
| TensorBlockScratch scratch(d); |
| |
| // TensorEvaluator is needed to produce tensor blocks of the expression. |
| auto eval = TensorEvaluator<const decltype(expr), Device>(expr, d); |
| eval.evalSubExprsIfNeeded(nullptr); |
| |
| // Choose a random offsets, sizes and TensorBlockDescriptor. |
| TensorBlockParams<NumDims> block_params = gen_block(); |
| |
| // Evaluate TensorBlock expression into a tensor. |
| Tensor<T, NumDims, Layout> block(block_params.desc.dimensions()); |
| |
| // Dimensions for the potential destination buffer. |
| DSizes<Index, NumDims> dst_dims; |
| if (internal::random<bool>()) { |
| dst_dims = block_params.desc.dimensions(); |
| } else { |
| for (int i = 0; i < NumDims; ++i) { |
| Index extent = internal::random<Index>(0, 5); |
| dst_dims[i] = block_params.desc.dimension(i) + extent; |
| } |
| } |
| |
| // Maybe use this tensor as a block desc destination. |
| Tensor<T, NumDims, Layout> dst(dst_dims); |
| dst.setZero(); |
| if (internal::random<bool>()) { |
| block_params.desc.template AddDestinationBuffer<Layout>(dst.data(), internal::strides<Layout>(dst.dimensions())); |
| } |
| |
| const bool root_of_expr = internal::random<bool>(); |
| auto tensor_block = eval.block(block_params.desc, scratch, root_of_expr); |
| |
| if (tensor_block.kind() == internal::TensorBlockKind::kMaterializedInOutput) { |
| // Copy data from destination buffer. |
| if (dimensions_match(dst.dimensions(), block.dimensions())) { |
| block = dst; |
| } else { |
| DSizes<Index, NumDims> offsets; |
| for (int i = 0; i < NumDims; ++i) offsets[i] = 0; |
| block = dst.slice(offsets, block.dimensions()); |
| } |
| |
| } else { |
| // Assign to block from expression. |
| auto b_expr = tensor_block.expr(); |
| |
| // We explicitly disable vectorization and tiling, to run a simple coefficient |
| // wise assignment loop, because it's very simple and should be correct. |
| using BlockAssign = TensorAssignOp<decltype(block), const decltype(b_expr)>; |
| using BlockExecutor = TensorExecutor<const BlockAssign, Device, false, internal::TiledEvaluation::Off>; |
| BlockExecutor::run(BlockAssign(block, b_expr), d); |
| } |
| |
| // Cleanup temporary buffers owned by a tensor block. |
| tensor_block.cleanup(); |
| |
| // Compute a Tensor slice corresponding to a Tensor block. |
| Tensor<T, NumDims, Layout> slice(block_params.desc.dimensions()); |
| auto s_expr = expr.slice(block_params.offsets, block_params.sizes); |
| |
| // Explicitly use coefficient assignment to evaluate slice expression. |
| using SliceAssign = TensorAssignOp<decltype(slice), const decltype(s_expr)>; |
| using SliceExecutor = TensorExecutor<const SliceAssign, Device, false, internal::TiledEvaluation::Off>; |
| SliceExecutor::run(SliceAssign(slice, s_expr), d); |
| |
| // Tensor block and tensor slice must be the same. |
| for (Index i = 0; i < block.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(block.coeff(i), slice.coeff(i)); |
| } |
| } |
| |
| // -------------------------------------------------------------------------- // |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_block() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| // Identity tensor expression transformation. |
| VerifyBlockEvaluator<T, NumDims, Layout>(input, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_unary_expr_block() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.abs(), [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_binary_expr_block() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> lhs(dims), rhs(dims); |
| lhs.setRandom(); |
| rhs.setRandom(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(lhs * rhs, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_binary_with_unary_expr_block() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> lhs(dims), rhs(dims); |
| lhs.setRandom(); |
| rhs.setRandom(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>((lhs.abs() + rhs.abs()).sqrt(), |
| [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_broadcast() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| DSizes<Index, NumDims> bcast = RandomDims<NumDims>(1, 5); |
| |
| DSizes<Index, NumDims> bcasted_dims; |
| for (int i = 0; i < NumDims; ++i) bcasted_dims[i] = dims[i] * bcast[i]; |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.broadcast(bcast), |
| [&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.broadcast(bcast), |
| [&bcasted_dims]() { return RandomBlock<Layout>(bcasted_dims, 5, 10); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.broadcast(bcast), |
| [&bcasted_dims]() { return FixedSizeBlock(bcasted_dims); }); |
| |
| // Check that desc.destination() memory is not shared between two broadcast |
| // materializations. |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.broadcast(bcast) * input.abs().broadcast(bcast), |
| [&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_reshape() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10); |
| |
| DSizes<Index, NumDims> shuffled = dims; |
| std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed)); |
| |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.reshape(shuffled), |
| [&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.reshape(shuffled), |
| [&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_cast() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.template cast<int>().template cast<T>(), |
| [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_select() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> lhs(dims); |
| Tensor<T, NumDims, Layout> rhs(dims); |
| Tensor<bool, NumDims, Layout> cond(dims); |
| lhs.setRandom(); |
| rhs.setRandom(); |
| cond.setRandom(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(cond.select(lhs, rhs), |
| [&dims]() { return RandomBlock<Layout>(dims, 1, 20); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_padding() { |
| const int inner_dim = Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1; |
| |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| DSizes<Index, NumDims> pad_before = RandomDims<NumDims>(0, 4); |
| DSizes<Index, NumDims> pad_after = RandomDims<NumDims>(0, 4); |
| array<std::pair<Index, Index>, NumDims> paddings; |
| for (int i = 0; i < NumDims; ++i) { |
| paddings[i] = std::make_pair(pad_before[i], pad_after[i]); |
| } |
| |
| // Test squeezing reads from inner dim. |
| if (internal::random<bool>()) { |
| pad_before[inner_dim] = 0; |
| pad_after[inner_dim] = 0; |
| paddings[inner_dim] = std::make_pair(0, 0); |
| } |
| |
| DSizes<Index, NumDims> padded_dims; |
| for (int i = 0; i < NumDims; ++i) { |
| padded_dims[i] = dims[i] + pad_before[i] + pad_after[i]; |
| } |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.pad(paddings), |
| [&padded_dims]() { return FixedSizeBlock(padded_dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.pad(paddings), |
| [&padded_dims]() { return RandomBlock<Layout>(padded_dims, 1, 10); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.pad(paddings), |
| [&padded_dims]() { return SkewedInnerBlock<Layout>(padded_dims); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_chipping() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| Index chip_dim = internal::random<int>(0, NumDims - 1); |
| Index chip_offset = internal::random<Index>(0, dims[chip_dim] - 2); |
| |
| DSizes<Index, NumDims - 1> chipped_dims; |
| for (Index i = 0; i < chip_dim; ++i) { |
| chipped_dims[i] = dims[i]; |
| } |
| for (Index i = chip_dim + 1; i < NumDims; ++i) { |
| chipped_dims[i - 1] = dims[i]; |
| } |
| |
| // Block buffer forwarding. |
| VerifyBlockEvaluator<T, NumDims - 1, Layout>(input.chip(chip_offset, chip_dim), |
| [&chipped_dims]() { return FixedSizeBlock(chipped_dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims - 1, Layout>(input.chip(chip_offset, chip_dim), |
| [&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); }); |
| |
| // Block expression assignment. |
| VerifyBlockEvaluator<T, NumDims - 1, Layout>(input.abs().chip(chip_offset, chip_dim), |
| [&chipped_dims]() { return FixedSizeBlock(chipped_dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims - 1, Layout>(input.abs().chip(chip_offset, chip_dim), |
| [&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims> |
| struct SimpleTensorGenerator { |
| T operator()(const array<Index, NumDims>& coords) const { |
| T result = static_cast<T>(0); |
| for (int i = 0; i < NumDims; ++i) { |
| result += static_cast<T>((i + 1) * coords[i]); |
| } |
| return result; |
| } |
| }; |
| |
| // Boolean specialization to avoid -Wint-in-bool-context warnings on GCC. |
| template <int NumDims> |
| struct SimpleTensorGenerator<bool, NumDims> { |
| bool operator()(const array<Index, NumDims>& coords) const { |
| bool result = false; |
| for (int i = 0; i < NumDims; ++i) { |
| result ^= coords[i]; |
| } |
| return result; |
| } |
| }; |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_generator() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| auto generator = SimpleTensorGenerator<T, NumDims>(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.generate(generator), [&dims]() { return FixedSizeBlock(dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.generate(generator), |
| [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_reverse() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| // Randomly reverse dimensions. |
| Eigen::DSizes<bool, NumDims> reverse; |
| for (int i = 0; i < NumDims; ++i) reverse[i] = internal::random<bool>(); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.reverse(reverse), [&dims]() { return FixedSizeBlock(dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.reverse(reverse), |
| [&dims]() { return RandomBlock<Layout>(dims, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_slice() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| // Pick a random slice of an input tensor. |
| DSizes<Index, NumDims> slice_start = RandomDims<NumDims>(5, 10); |
| DSizes<Index, NumDims> slice_size = RandomDims<NumDims>(5, 10); |
| |
| // Make sure that slice start + size do not overflow tensor dims. |
| for (int i = 0; i < NumDims; ++i) { |
| slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]); |
| slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]); |
| } |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.slice(slice_start, slice_size), |
| [&slice_size]() { return FixedSizeBlock(slice_size); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.slice(slice_start, slice_size), |
| [&slice_size]() { return RandomBlock<Layout>(slice_size, 1, 10); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_eval_tensor_shuffle() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(5, 15); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| DSizes<Index, NumDims> shuffle; |
| for (int i = 0; i < NumDims; ++i) shuffle[i] = i; |
| |
| do { |
| DSizes<Index, NumDims> shuffled_dims; |
| for (int i = 0; i < NumDims; ++i) shuffled_dims[i] = dims[shuffle[i]]; |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.shuffle(shuffle), |
| [&shuffled_dims]() { return FixedSizeBlock(shuffled_dims); }); |
| |
| VerifyBlockEvaluator<T, NumDims, Layout>(input.shuffle(shuffle), |
| [&shuffled_dims]() { return RandomBlock<Layout>(shuffled_dims, 1, 5); }); |
| |
| break; |
| |
| } while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims)); |
| } |
| |
| template <typename T, int Layout> |
| static void test_eval_tensor_reshape_with_bcast() { |
| Index dim = internal::random<Index>(1, 100); |
| |
| Tensor<T, 2, Layout> lhs(1, dim); |
| Tensor<T, 2, Layout> rhs(dim, 1); |
| lhs.setRandom(); |
| rhs.setRandom(); |
| |
| auto reshapeLhs = NByOne(dim); |
| auto reshapeRhs = OneByM(dim); |
| |
| auto bcastLhs = OneByM(dim); |
| auto bcastRhs = NByOne(dim); |
| |
| DSizes<Index, 2> dims(dim, dim); |
| |
| VerifyBlockEvaluator<T, 2, Layout>( |
| lhs.reshape(reshapeLhs).broadcast(bcastLhs) * rhs.reshape(reshapeRhs).broadcast(bcastRhs), |
| [dims]() { return SkewedInnerBlock<Layout, 2>(dims); }); |
| } |
| |
| template <typename T, int Layout> |
| static void test_eval_tensor_forced_eval() { |
| Index dim = internal::random<Index>(1, 100); |
| |
| Tensor<T, 2, Layout> lhs(dim, 1); |
| Tensor<T, 2, Layout> rhs(1, dim); |
| lhs.setRandom(); |
| rhs.setRandom(); |
| |
| auto bcastLhs = OneByM(dim); |
| auto bcastRhs = NByOne(dim); |
| |
| DSizes<Index, 2> dims(dim, dim); |
| |
| VerifyBlockEvaluator<T, 2, Layout>((lhs.broadcast(bcastLhs) * rhs.broadcast(bcastRhs)).eval().reshape(dims), |
| [dims]() { return SkewedInnerBlock<Layout, 2>(dims); }); |
| |
| VerifyBlockEvaluator<T, 2, Layout>((lhs.broadcast(bcastLhs) * rhs.broadcast(bcastRhs)).eval().reshape(dims), |
| [dims]() { return RandomBlock<Layout, 2>(dims, 1, 50); }); |
| } |
| |
| template <typename T, int Layout> |
| static void test_eval_tensor_chipping_of_bcast() { |
| if (Layout != static_cast<int>(RowMajor)) return; |
| |
| Index dim0 = internal::random<Index>(1, 10); |
| Index dim1 = internal::random<Index>(1, 10); |
| Index dim2 = internal::random<Index>(1, 10); |
| |
| Tensor<T, 3, Layout> input(1, dim1, dim2); |
| input.setRandom(); |
| |
| Eigen::array<Index, 3> bcast = {{dim0, 1, 1}}; |
| DSizes<Index, 2> chipped_dims(dim0, dim2); |
| |
| VerifyBlockEvaluator<T, 2, Layout>(input.broadcast(bcast).chip(0, 1), |
| [chipped_dims]() { return FixedSizeBlock(chipped_dims); }); |
| |
| VerifyBlockEvaluator<T, 2, Layout>(input.broadcast(bcast).chip(0, 1), |
| [chipped_dims]() { return SkewedInnerBlock<Layout, 2>(chipped_dims); }); |
| |
| VerifyBlockEvaluator<T, 2, Layout>(input.broadcast(bcast).chip(0, 1), |
| [chipped_dims]() { return RandomBlock<Layout, 2>(chipped_dims, 1, 5); }); |
| } |
| |
| // -------------------------------------------------------------------------- // |
| // Verify that assigning block to a Tensor expression produces the same result |
| // as an assignment to TensorSliceOp (writing a block is is identical to |
| // assigning one tensor to a slice of another tensor). |
| |
| template <typename T, int NumDims, int Layout, int NumExprDims = NumDims, typename Expression, typename GenBlockParams> |
| static void VerifyBlockAssignment(Tensor<T, NumDims, Layout>& tensor, Expression expr, GenBlockParams gen_block) { |
| using Device = DefaultDevice; |
| auto d = Device(); |
| |
| // We use tensor evaluator as a target for block and slice assignments. |
| auto eval = TensorEvaluator<decltype(expr), Device>(expr, d); |
| |
| // Generate a random block, or choose a block that fits in full expression. |
| TensorBlockParams<NumExprDims> block_params = gen_block(); |
| |
| // Generate random data of the selected block size. |
| Tensor<T, NumExprDims, Layout> block(block_params.desc.dimensions()); |
| block.setRandom(); |
| |
| // ************************************************************************ // |
| // (1) Assignment from a block. |
| |
| // Construct a materialize block from a random generated block tensor. |
| internal::TensorMaterializedBlock<T, NumExprDims, Layout> blk(internal::TensorBlockKind::kView, block.data(), |
| block.dimensions()); |
| |
| // Reset all underlying tensor values to zero. |
| tensor.setZero(); |
| |
| // Use evaluator to write block into a tensor. |
| eval.writeBlock(block_params.desc, blk); |
| |
| // Make a copy of the result after assignment. |
| Tensor<T, NumDims, Layout> block_assigned = tensor; |
| |
| // ************************************************************************ // |
| // (2) Assignment to a slice |
| |
| // Reset all underlying tensor values to zero. |
| tensor.setZero(); |
| |
| // Assign block to a slice of original expression |
| auto s_expr = expr.slice(block_params.offsets, block_params.sizes); |
| |
| // Explicitly use coefficient assignment to evaluate slice expression. |
| using SliceAssign = TensorAssignOp<decltype(s_expr), const decltype(block)>; |
| using SliceExecutor = TensorExecutor<const SliceAssign, Device, false, internal::TiledEvaluation::Off>; |
| SliceExecutor::run(SliceAssign(s_expr, block), d); |
| |
| // Make a copy of the result after assignment. |
| Tensor<T, NumDims, Layout> slice_assigned = tensor; |
| |
| for (Index i = 0; i < tensor.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(block_assigned.coeff(i), slice_assigned.coeff(i)); |
| } |
| } |
| |
| // -------------------------------------------------------------------------- // |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_assign_to_tensor() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> tensor(dims); |
| |
| TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); }); |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map, [&dims]() { return FixedSizeBlock(dims); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_assign_to_tensor_reshape() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> tensor(dims); |
| |
| TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims); |
| |
| DSizes<Index, NumDims> shuffled = dims; |
| std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed)); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.reshape(shuffled), |
| [&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.reshape(shuffled), |
| [&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.reshape(shuffled), |
| [&shuffled]() { return FixedSizeBlock(shuffled); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_assign_to_tensor_chipping() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> tensor(dims); |
| |
| Index chip_dim = internal::random<int>(0, NumDims - 1); |
| Index chip_offset = internal::random<Index>(0, dims[chip_dim] - 2); |
| |
| DSizes<Index, NumDims - 1> chipped_dims; |
| for (Index i = 0; i < chip_dim; ++i) { |
| chipped_dims[i] = dims[i]; |
| } |
| for (Index i = chip_dim + 1; i < NumDims; ++i) { |
| chipped_dims[i - 1] = dims[i]; |
| } |
| |
| TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims); |
| |
| VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>( |
| tensor, map.chip(chip_offset, chip_dim), [&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>( |
| tensor, map.chip(chip_offset, chip_dim), [&chipped_dims]() { return SkewedInnerBlock<Layout>(chipped_dims); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(tensor, map.chip(chip_offset, chip_dim), |
| [&chipped_dims]() { return FixedSizeBlock(chipped_dims); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_assign_to_tensor_slice() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20); |
| Tensor<T, NumDims, Layout> tensor(dims); |
| |
| // Pick a random slice of tensor. |
| DSizes<Index, NumDims> slice_start = RandomDims<NumDims>(5, 10); |
| DSizes<Index, NumDims> slice_size = RandomDims<NumDims>(5, 10); |
| |
| // Make sure that slice start + size do not overflow tensor dims. |
| for (int i = 0; i < NumDims; ++i) { |
| slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]); |
| slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]); |
| } |
| |
| TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.slice(slice_start, slice_size), |
| [&slice_size]() { return RandomBlock<Layout>(slice_size, 1, 10); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.slice(slice_start, slice_size), |
| [&slice_size]() { return SkewedInnerBlock<Layout>(slice_size); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.slice(slice_start, slice_size), |
| [&slice_size]() { return FixedSizeBlock(slice_size); }); |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_assign_to_tensor_shuffle() { |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(5, 15); |
| Tensor<T, NumDims, Layout> tensor(dims); |
| |
| DSizes<Index, NumDims> shuffle; |
| for (int i = 0; i < NumDims; ++i) shuffle[i] = i; |
| |
| TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims); |
| |
| do { |
| DSizes<Index, NumDims> shuffled_dims; |
| for (int i = 0; i < NumDims; ++i) shuffled_dims[i] = dims[shuffle[i]]; |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.shuffle(shuffle), |
| [&shuffled_dims]() { return FixedSizeBlock(shuffled_dims); }); |
| |
| VerifyBlockAssignment<T, NumDims, Layout>(tensor, map.shuffle(shuffle), |
| [&shuffled_dims]() { return RandomBlock<Layout>(shuffled_dims, 1, 5); }); |
| |
| } while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims)); |
| } |
| |
| // -------------------------------------------------------------------------- // |
| |
| #define CALL_SUBTEST_PART(PART) CALL_SUBTEST_##PART |
| |
| #define CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(PART, NAME) \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 1, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 2, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 3, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 4, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 5, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 1, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 2, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 5, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 1, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 2, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 3, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 4, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 5, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 1, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 2, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<int, 5, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 1, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 2, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 3, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 4, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 5, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 1, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 2, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, 5, ColMajor>())) |
| |
| #define CALL_SUBTESTS_DIMS_LAYOUTS(PART, NAME) \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 1, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 2, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 3, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 4, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 5, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 1, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 2, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, 5, ColMajor>())) |
| |
| #define CALL_SUBTESTS_LAYOUTS_TYPES(PART, NAME) \ |
| CALL_SUBTEST_PART(PART)((NAME<float, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, ColMajor>())) |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_block_eval) { |
| // clang-format off |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(1, test_eval_tensor_block); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(1, test_eval_tensor_binary_expr_block); |
| CALL_SUBTESTS_DIMS_LAYOUTS(1, test_eval_tensor_unary_expr_block); |
| CALL_SUBTESTS_DIMS_LAYOUTS(2, test_eval_tensor_binary_with_unary_expr_block); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(2, test_eval_tensor_broadcast); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(2, test_eval_tensor_reshape); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_cast); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_select); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_padding); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_chipping); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_generator); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_reverse); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(5, test_eval_tensor_slice); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(5, test_eval_tensor_shuffle); |
| |
| CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_reshape_with_bcast); |
| CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_forced_eval); |
| CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_chipping_of_bcast); |
| |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor_reshape); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor_chipping); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(8, test_assign_to_tensor_slice); |
| CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(8, test_assign_to_tensor_shuffle); |
| |
| // Force CMake to split this test. |
| // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8 |
| |
| // clang-format on |
| } |