| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_static_chip_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| IndexType sizeDim5 = 11; |
| |
| array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| |
| Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> chip1(chip1TensorRange); |
| |
| tensor.setRandom(); |
| |
| const size_t tensorBuffSize = tensor.size() * sizeof(DataType); |
| const size_t chip1TensorBuffSize = chip1.size() * sizeof(DataType); |
| DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 5, DataLayout, IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); |
| gpu_chip1.device(sycl_device) = gpu_tensor.template chip<0l>(1l); |
| sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2); |
| VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3); |
| VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4); |
| VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim2; ++i) { |
| for (IndexType j = 0; j < sizeDim3; ++j) { |
| for (IndexType k = 0; k < sizeDim4; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip1(i, j, k, l), tensor(1l, i, j, k, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip2(chip2TensorRange); |
| const size_t chip2TensorBuffSize = chip2.size() * sizeof(DataType); |
| DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange); |
| |
| gpu_chip2.device(sycl_device) = gpu_tensor.template chip<1l>(1l); |
| sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3); |
| VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4); |
| VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim3; ++j) { |
| for (IndexType k = 0; k < sizeDim4; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip2(i, j, k, l), tensor(i, 1l, j, k, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip3(chip3TensorRange); |
| const size_t chip3TensorBuffSize = chip3.size() * sizeof(DataType); |
| DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange); |
| |
| gpu_chip3.device(sycl_device) = gpu_tensor.template chip<2l>(2l); |
| sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2); |
| VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4); |
| VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim4; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip3(i, j, k, l), tensor(i, j, 2l, k, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip4(chip4TensorRange); |
| const size_t chip4TensorBuffSize = chip4.size() * sizeof(DataType); |
| DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange); |
| |
| gpu_chip4.device(sycl_device) = gpu_tensor.template chip<3l>(5l); |
| sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2); |
| VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3); |
| VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip4(i, j, k, l), tensor(i, j, k, 5l, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip5(chip5TensorRange); |
| const size_t chip5TensorBuffSize = chip5.size() * sizeof(DataType); |
| DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange); |
| |
| gpu_chip5.device(sycl_device) = gpu_tensor.template chip<4l>(7l); |
| sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2); |
| VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3); |
| VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| for (IndexType l = 0; l < sizeDim4; ++l) { |
| VERIFY_IS_EQUAL(chip5(i, j, k, l), tensor(i, j, k, l, 7l)); |
| } |
| } |
| } |
| } |
| |
| sycl_device.deallocate(gpu_data_tensor); |
| sycl_device.deallocate(gpu_data_chip1); |
| sycl_device.deallocate(gpu_data_chip2); |
| sycl_device.deallocate(gpu_data_chip3); |
| sycl_device.deallocate(gpu_data_chip4); |
| sycl_device.deallocate(gpu_data_chip5); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_dynamic_chip_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| IndexType sizeDim5 = 11; |
| |
| array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| |
| Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> chip1(chip1TensorRange); |
| |
| tensor.setRandom(); |
| |
| const size_t tensorBuffSize = tensor.size() * sizeof(DataType); |
| const size_t chip1TensorBuffSize = chip1.size() * sizeof(DataType); |
| DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 5, DataLayout, IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); |
| gpu_chip1.device(sycl_device) = gpu_tensor.chip(1l, 0l); |
| sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2); |
| VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3); |
| VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4); |
| VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim2; ++i) { |
| for (IndexType j = 0; j < sizeDim3; ++j) { |
| for (IndexType k = 0; k < sizeDim4; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip1(i, j, k, l), tensor(1l, i, j, k, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip2(chip2TensorRange); |
| const size_t chip2TensorBuffSize = chip2.size() * sizeof(DataType); |
| DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange); |
| |
| gpu_chip2.device(sycl_device) = gpu_tensor.chip(1l, 1l); |
| sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3); |
| VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4); |
| VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim3; ++j) { |
| for (IndexType k = 0; k < sizeDim4; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip2(i, j, k, l), tensor(i, 1l, j, k, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip3(chip3TensorRange); |
| const size_t chip3TensorBuffSize = chip3.size() * sizeof(DataType); |
| DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange); |
| |
| gpu_chip3.device(sycl_device) = gpu_tensor.chip(2l, 2l); |
| sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2); |
| VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4); |
| VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim4; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip3(i, j, k, l), tensor(i, j, 2l, k, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip4(chip4TensorRange); |
| const size_t chip4TensorBuffSize = chip4.size() * sizeof(DataType); |
| DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange); |
| |
| gpu_chip4.device(sycl_device) = gpu_tensor.chip(5l, 3l); |
| sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2); |
| VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3); |
| VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| for (IndexType l = 0; l < sizeDim5; ++l) { |
| VERIFY_IS_EQUAL(chip4(i, j, k, l), tensor(i, j, k, 5l, l)); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; |
| Tensor<DataType, 4, DataLayout, IndexType> chip5(chip5TensorRange); |
| const size_t chip5TensorBuffSize = chip5.size() * sizeof(DataType); |
| DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange); |
| |
| gpu_chip5.device(sycl_device) = gpu_tensor.chip(7l, 4l); |
| sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize); |
| |
| VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1); |
| VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2); |
| VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3); |
| VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| for (IndexType l = 0; l < sizeDim4; ++l) { |
| VERIFY_IS_EQUAL(chip5(i, j, k, l), tensor(i, j, k, l, 7l)); |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data_tensor); |
| sycl_device.deallocate(gpu_data_chip1); |
| sycl_device.deallocate(gpu_data_chip2); |
| sycl_device.deallocate(gpu_data_chip3); |
| sycl_device.deallocate(gpu_data_chip4); |
| sycl_device.deallocate(gpu_data_chip5); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_chip_in_expr(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| IndexType sizeDim5 = 11; |
| |
| array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| |
| Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange); |
| |
| Tensor<DataType, 4, DataLayout, IndexType> chip1(chip1TensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> tensor1(chip1TensorRange); |
| tensor.setRandom(); |
| tensor1.setRandom(); |
| |
| const size_t tensorBuffSize = tensor.size() * sizeof(DataType); |
| const size_t chip1TensorBuffSize = chip1.size() * sizeof(DataType); |
| DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); |
| DataType* gpu_data_tensor1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 5, DataLayout, IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_tensor1(gpu_data_tensor1, chip1TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); |
| sycl_device.memcpyHostToDevice(gpu_data_tensor1, tensor1.data(), chip1TensorBuffSize); |
| gpu_chip1.device(sycl_device) = gpu_tensor.template chip<0l>(0l) + gpu_tensor1; |
| sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); |
| |
| for (int i = 0; i < sizeDim2; ++i) { |
| for (int j = 0; j < sizeDim3; ++j) { |
| for (int k = 0; k < sizeDim4; ++k) { |
| for (int l = 0; l < sizeDim5; ++l) { |
| float expected = tensor(0l, i, j, k, l) + tensor1(i, j, k, l); |
| VERIFY_IS_EQUAL(chip1(i, j, k, l), expected); |
| } |
| } |
| } |
| } |
| |
| array<IndexType, 3> chip2TensorRange = {{sizeDim2, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 3, DataLayout, IndexType> tensor2(chip2TensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> chip2(chip2TensorRange); |
| tensor2.setRandom(); |
| const size_t chip2TensorBuffSize = tensor2.size() * sizeof(DataType); |
| DataType* gpu_data_tensor2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); |
| DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_tensor2(gpu_data_tensor2, chip2TensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_tensor2, tensor2.data(), chip2TensorBuffSize); |
| gpu_chip2.device(sycl_device) = gpu_tensor.template chip<0l>(0l).template chip<1l>(2l) + gpu_tensor2; |
| sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); |
| |
| for (int i = 0; i < sizeDim2; ++i) { |
| for (int j = 0; j < sizeDim4; ++j) { |
| for (int k = 0; k < sizeDim5; ++k) { |
| float expected = tensor(0l, i, 2l, j, k) + tensor2(i, j, k); |
| VERIFY_IS_EQUAL(chip2(i, j, k), expected); |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data_tensor); |
| sycl_device.deallocate(gpu_data_tensor1); |
| sycl_device.deallocate(gpu_data_chip1); |
| sycl_device.deallocate(gpu_data_tensor2); |
| sycl_device.deallocate(gpu_data_chip2); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_chip_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| IndexType sizeDim5 = 11; |
| |
| array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| array<IndexType, 4> input2TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| |
| Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange); |
| Tensor<DataType, 5, DataLayout, IndexType> input1(tensorRange); |
| Tensor<DataType, 4, DataLayout, IndexType> input2(input2TensorRange); |
| input1.setRandom(); |
| input2.setRandom(); |
| |
| const size_t tensorBuffSize = tensor.size() * sizeof(DataType); |
| const size_t input2TensorBuffSize = input2.size() * sizeof(DataType); |
| std::cout << tensorBuffSize << " , " << input2TensorBuffSize << std::endl; |
| DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_input1 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_input2 = static_cast<DataType*>(sycl_device.allocate(input2TensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 5, DataLayout, IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); |
| TensorMap<Tensor<DataType, 5, DataLayout, IndexType>> gpu_input1(gpu_data_input1, tensorRange); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_input2(gpu_data_input2, input2TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_input1, input1.data(), tensorBuffSize); |
| gpu_tensor.device(sycl_device) = gpu_input1; |
| sycl_device.memcpyHostToDevice(gpu_data_input2, input2.data(), input2TensorBuffSize); |
| gpu_tensor.template chip<0l>(1l).device(sycl_device) = gpu_input2; |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); |
| |
| for (int i = 0; i < sizeDim1; ++i) { |
| for (int j = 0; j < sizeDim2; ++j) { |
| for (int k = 0; k < sizeDim3; ++k) { |
| for (int l = 0; l < sizeDim4; ++l) { |
| for (int m = 0; m < sizeDim5; ++m) { |
| if (i != 1) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); |
| } else { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input2(j, k, l, m)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| gpu_tensor.device(sycl_device) = gpu_input1; |
| array<IndexType, 4> input3TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> input3(input3TensorRange); |
| input3.setRandom(); |
| |
| const size_t input3TensorBuffSize = input3.size() * sizeof(DataType); |
| DataType* gpu_data_input3 = static_cast<DataType*>(sycl_device.allocate(input3TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_input3(gpu_data_input3, input3TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_input3, input3.data(), input3TensorBuffSize); |
| gpu_tensor.template chip<1l>(1l).device(sycl_device) = gpu_input3; |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); |
| |
| for (int i = 0; i < sizeDim1; ++i) { |
| for (int j = 0; j < sizeDim2; ++j) { |
| for (int k = 0; k < sizeDim3; ++k) { |
| for (int l = 0; l < sizeDim4; ++l) { |
| for (int m = 0; m < sizeDim5; ++m) { |
| if (j != 1) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); |
| } else { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input3(i, k, l, m)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| gpu_tensor.device(sycl_device) = gpu_input1; |
| array<IndexType, 4> input4TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> input4(input4TensorRange); |
| input4.setRandom(); |
| |
| const size_t input4TensorBuffSize = input4.size() * sizeof(DataType); |
| DataType* gpu_data_input4 = static_cast<DataType*>(sycl_device.allocate(input4TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_input4(gpu_data_input4, input4TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_input4, input4.data(), input4TensorBuffSize); |
| gpu_tensor.template chip<2l>(3l).device(sycl_device) = gpu_input4; |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); |
| |
| for (int i = 0; i < sizeDim1; ++i) { |
| for (int j = 0; j < sizeDim2; ++j) { |
| for (int k = 0; k < sizeDim3; ++k) { |
| for (int l = 0; l < sizeDim4; ++l) { |
| for (int m = 0; m < sizeDim5; ++m) { |
| if (k != 3) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); |
| } else { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input4(i, j, l, m)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| gpu_tensor.device(sycl_device) = gpu_input1; |
| array<IndexType, 4> input5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; |
| Tensor<DataType, 4, DataLayout, IndexType> input5(input5TensorRange); |
| input5.setRandom(); |
| |
| const size_t input5TensorBuffSize = input5.size() * sizeof(DataType); |
| DataType* gpu_data_input5 = static_cast<DataType*>(sycl_device.allocate(input5TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_input5(gpu_data_input5, input5TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_input5, input5.data(), input5TensorBuffSize); |
| gpu_tensor.template chip<3l>(4l).device(sycl_device) = gpu_input5; |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); |
| |
| for (int i = 0; i < sizeDim1; ++i) { |
| for (int j = 0; j < sizeDim2; ++j) { |
| for (int k = 0; k < sizeDim3; ++k) { |
| for (int l = 0; l < sizeDim4; ++l) { |
| for (int m = 0; m < sizeDim5; ++m) { |
| if (l != 4) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); |
| } else { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input5(i, j, k, m)); |
| } |
| } |
| } |
| } |
| } |
| } |
| gpu_tensor.device(sycl_device) = gpu_input1; |
| array<IndexType, 4> input6TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; |
| Tensor<DataType, 4, DataLayout, IndexType> input6(input6TensorRange); |
| input6.setRandom(); |
| |
| const size_t input6TensorBuffSize = input6.size() * sizeof(DataType); |
| DataType* gpu_data_input6 = static_cast<DataType*>(sycl_device.allocate(input6TensorBuffSize)); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_input6(gpu_data_input6, input6TensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_input6, input6.data(), input6TensorBuffSize); |
| gpu_tensor.template chip<4l>(5l).device(sycl_device) = gpu_input6; |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); |
| |
| for (int i = 0; i < sizeDim1; ++i) { |
| for (int j = 0; j < sizeDim2; ++j) { |
| for (int k = 0; k < sizeDim3; ++k) { |
| for (int l = 0; l < sizeDim4; ++l) { |
| for (int m = 0; m < sizeDim5; ++m) { |
| if (m != 5) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); |
| } else { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input6(i, j, k, l)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| gpu_tensor.device(sycl_device) = gpu_input1; |
| Tensor<DataType, 5, DataLayout, IndexType> input7(tensorRange); |
| input7.setRandom(); |
| |
| DataType* gpu_data_input7 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| TensorMap<Tensor<DataType, 5, DataLayout, IndexType>> gpu_input7(gpu_data_input7, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_input7, input7.data(), tensorBuffSize); |
| gpu_tensor.chip(0l, 0l).device(sycl_device) = gpu_input7.chip(0l, 0l); |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); |
| |
| for (int i = 0; i < sizeDim1; ++i) { |
| for (int j = 0; j < sizeDim2; ++j) { |
| for (int k = 0; k < sizeDim3; ++k) { |
| for (int l = 0; l < sizeDim4; ++l) { |
| for (int m = 0; m < sizeDim5; ++m) { |
| if (i != 0) { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m)); |
| } else { |
| VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input7(i, j, k, l, m)); |
| } |
| } |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data_tensor); |
| sycl_device.deallocate(gpu_data_input1); |
| sycl_device.deallocate(gpu_data_input2); |
| sycl_device.deallocate(gpu_data_input3); |
| sycl_device.deallocate(gpu_data_input4); |
| sycl_device.deallocate(gpu_data_input5); |
| sycl_device.deallocate(gpu_data_input6); |
| sycl_device.deallocate(gpu_data_input7); |
| } |
| |
| template <typename DataType, typename dev_Selector> |
| void sycl_chipping_test_per_device(dev_Selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| /* test_static_chip_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_static_chip_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_dynamic_chip_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_dynamic_chip_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_chip_in_expr<DataType, RowMajor, int64_t>(sycl_device); |
| test_chip_in_expr<DataType, ColMajor, int64_t>(sycl_device);*/ |
| test_chip_as_lvalue_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| // test_chip_as_lvalue_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_chipping_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_chipping_test_per_device<float>(device)); |
| CALL_SUBTEST(sycl_chipping_test_per_device<half>(device)); |
| } |
| } |