| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| template <typename TensorType> |
| struct InsertZeros { |
| DSizes<DenseIndex, 2> dimensions(const TensorType& input) const { |
| DSizes<DenseIndex, 2> result; |
| result[0] = input.dimension(0) * 2; |
| result[1] = input.dimension(1) * 2; |
| return result; |
| } |
| |
| template <typename Output, typename Device> |
| void eval(const TensorType& input, Output& output, const Device& device) const { |
| array<DenseIndex, 2> strides; |
| strides[0] = 2; |
| strides[1] = 2; |
| output.stride(strides).device(device) = input; |
| |
| Eigen::DSizes<DenseIndex, 2> offsets(1, 1); |
| Eigen::DSizes<DenseIndex, 2> extents(output.dimension(0) - 1, output.dimension(1) - 1); |
| output.slice(offsets, extents).stride(strides).device(device) = input.constant(0.0f); |
| } |
| }; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_custom_unary_op_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 3; |
| IndexType sizeDim2 = 5; |
| Eigen::array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}}; |
| Eigen::array<IndexType, 2> tensorResultRange = {{6, 10}}; |
| |
| Eigen::Tensor<DataType, 2, DataLayout, IndexType> in1(tensorRange); |
| Eigen::Tensor<DataType, 2, DataLayout, IndexType> out(tensorResultRange); |
| |
| DataType* gpu_in1_data = |
| static_cast<DataType*>(sycl_device.allocate(in1.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data = |
| static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize() * sizeof(DataType))); |
| |
| typedef Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > TensorType; |
| TensorType gpu_in1(gpu_in1_data, tensorRange); |
| TensorType gpu_out(gpu_out_data, tensorResultRange); |
| |
| in1.setRandom(); |
| sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(), (in1.dimensions().TotalSize()) * sizeof(DataType)); |
| gpu_out.device(sycl_device) = gpu_in1.customOp(InsertZeros<TensorType>()); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, (out.dimensions().TotalSize()) * sizeof(DataType)); |
| |
| VERIFY_IS_EQUAL(out.dimension(0), 6); |
| VERIFY_IS_EQUAL(out.dimension(1), 10); |
| |
| for (int i = 0; i < 6; i += 2) { |
| for (int j = 0; j < 10; j += 2) { |
| VERIFY_IS_EQUAL(out(i, j), in1(i / 2, j / 2)); |
| } |
| } |
| for (int i = 1; i < 6; i += 2) { |
| for (int j = 1; j < 10; j += 2) { |
| VERIFY_IS_EQUAL(out(i, j), 0); |
| } |
| } |
| sycl_device.deallocate(gpu_in1_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| |
| template <typename TensorType> |
| struct BatchMatMul { |
| DSizes<DenseIndex, 3> dimensions(const TensorType& input1, const TensorType& input2) const { |
| DSizes<DenseIndex, 3> result; |
| result[0] = input1.dimension(0); |
| result[1] = input2.dimension(1); |
| result[2] = input2.dimension(2); |
| return result; |
| } |
| |
| template <typename Output, typename Device> |
| void eval(const TensorType& input1, const TensorType& input2, Output& output, const Device& device) const { |
| typedef typename TensorType::DimensionPair DimPair; |
| array<DimPair, 1> dims; |
| dims[0] = DimPair(1, 0); |
| for (int64_t i = 0; i < output.dimension(2); ++i) { |
| output.template chip<2>(i).device(device) = input1.template chip<2>(i).contract(input2.template chip<2>(i), dims); |
| } |
| } |
| }; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_custom_binary_op_sycl(const Eigen::SyclDevice& sycl_device) { |
| Eigen::array<IndexType, 3> tensorRange1 = {{2, 3, 5}}; |
| Eigen::array<IndexType, 3> tensorRange2 = {{3, 7, 5}}; |
| Eigen::array<IndexType, 3> tensorResultRange = {{2, 7, 5}}; |
| |
| Eigen::Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange1); |
| Eigen::Tensor<DataType, 3, DataLayout, IndexType> in2(tensorRange2); |
| Eigen::Tensor<DataType, 3, DataLayout, IndexType> out(tensorResultRange); |
| |
| DataType* gpu_in1_data = |
| static_cast<DataType*>(sycl_device.allocate(in1.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_in2_data = |
| static_cast<DataType*>(sycl_device.allocate(in2.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data = |
| static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize() * sizeof(DataType))); |
| |
| typedef Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > TensorType; |
| TensorType gpu_in1(gpu_in1_data, tensorRange1); |
| TensorType gpu_in2(gpu_in2_data, tensorRange2); |
| TensorType gpu_out(gpu_out_data, tensorResultRange); |
| |
| in1.setRandom(); |
| in2.setRandom(); |
| |
| sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(), (in1.dimensions().TotalSize()) * sizeof(DataType)); |
| sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(), (in2.dimensions().TotalSize()) * sizeof(DataType)); |
| |
| gpu_out.device(sycl_device) = gpu_in1.customOp(gpu_in2, BatchMatMul<TensorType>()); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, (out.dimensions().TotalSize()) * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < 5; ++i) { |
| typedef typename Eigen::Tensor<DataType, 3, DataLayout, IndexType>::DimensionPair DimPair; |
| array<DimPair, 1> dims; |
| dims[0] = DimPair(1, 0); |
| Eigen::Tensor<DataType, 2, DataLayout, IndexType> reference = |
| in1.template chip<2>(i).contract(in2.template chip<2>(i), dims); |
| TensorRef<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > val = out.template chip<2>(i); |
| for (IndexType j = 0; j < 2; ++j) { |
| for (IndexType k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(val(j, k), reference(j, k)); |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_in1_data); |
| sycl_device.deallocate(gpu_in2_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| |
| template <typename DataType, typename Dev_selector> |
| void custom_op_perDevice(Dev_selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_custom_unary_op_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_custom_unary_op_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_custom_binary_op_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_custom_binary_op_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_custom_op_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(custom_op_perDevice<float>(device)); |
| } |
| } |