blob: e4aec1b1b8439501a31aa0e7aaa9b09aeb65229c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
struct Generator1D {
Generator1D() {}
float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const { return coordinates[0]; }
};
template <int DataLayout>
static void test_1D() {
Tensor<float, 1> vec(6);
Tensor<float, 1> result = vec.generate(Generator1D());
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(result(i), i);
}
}
struct Generator2D {
Generator2D() {}
float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const {
return 3 * coordinates[0] + 11 * coordinates[1];
}
};
template <int DataLayout>
static void test_2D() {
Tensor<float, 2> matrix(512, 512);
Tensor<float, 2> result = matrix.generate(Generator2D());
for (int i = 0; i < 512; ++i) {
for (int j = 0; j < 512; ++j) {
VERIFY_IS_EQUAL(result(i, j), 3 * i + 11 * j);
}
}
}
template <int DataLayout>
static void test_gaussian() {
int rows = 32;
int cols = 48;
array<float, 2> means;
means[0] = rows / 2.0f;
means[1] = cols / 2.0f;
array<float, 2> std_devs;
std_devs[0] = 3.14f;
std_devs[1] = 2.7f;
internal::GaussianGenerator<float, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs);
Tensor<float, 2> matrix(rows, cols);
Tensor<float, 2> result = matrix.generate(gaussian_gen);
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
float g_rows = powf(rows / 2.0f - i, 2) / (3.14f * 3.14f) * 0.5f;
float g_cols = powf(cols / 2.0f - j, 2) / (2.7f * 2.7f) * 0.5f;
float gaussian = expf(-g_rows - g_cols);
VERIFY_IS_EQUAL(result(i, j), gaussian);
}
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_generator) {
CALL_SUBTEST(test_1D<ColMajor>());
CALL_SUBTEST(test_1D<RowMajor>());
CALL_SUBTEST(test_2D<ColMajor>());
CALL_SUBTEST(test_2D<RowMajor>());
CALL_SUBTEST(test_gaussian<ColMajor>());
CALL_SUBTEST(test_gaussian<RowMajor>());
}