| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| static const float error_threshold = 1e-8f; |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| struct Generator1D { |
| Generator1D() {} |
| |
| float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const { return coordinates[0]; } |
| }; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_1D_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 6; |
| array<IndexType, 1> tensorRange = {{sizeDim1}}; |
| Tensor<DataType, 1, DataLayout, IndexType> vec(tensorRange); |
| Tensor<DataType, 1, DataLayout, IndexType> result(tensorRange); |
| |
| const size_t tensorBuffSize = vec.size() * sizeof(DataType); |
| DataType* gpu_data_vec = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu_vec(gpu_data_vec, tensorRange); |
| TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu_result(gpu_data_result, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_vec, vec.data(), tensorBuffSize); |
| gpu_result.device(sycl_device) = gpu_vec.generate(Generator1D()); |
| sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize); |
| |
| for (IndexType i = 0; i < 6; ++i) { |
| VERIFY_IS_EQUAL(result(i), i); |
| } |
| } |
| |
| struct Generator2D { |
| Generator2D() {} |
| |
| float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const { |
| return 3 * coordinates[0] + 11 * coordinates[1]; |
| } |
| }; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_2D_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 5; |
| IndexType sizeDim2 = 7; |
| array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}}; |
| Tensor<DataType, 2, DataLayout, IndexType> matrix(tensorRange); |
| Tensor<DataType, 2, DataLayout, IndexType> result(tensorRange); |
| |
| const size_t tensorBuffSize = matrix.size() * sizeof(DataType); |
| DataType* gpu_data_matrix = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu_matrix(gpu_data_matrix, tensorRange); |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu_result(gpu_data_result, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_matrix, matrix.data(), tensorBuffSize); |
| gpu_result.device(sycl_device) = gpu_matrix.generate(Generator2D()); |
| sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize); |
| |
| for (IndexType i = 0; i < 5; ++i) { |
| for (IndexType j = 0; j < 5; ++j) { |
| VERIFY_IS_EQUAL(result(i, j), 3 * i + 11 * j); |
| } |
| } |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_gaussian_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType rows = 32; |
| IndexType cols = 48; |
| array<DataType, 2> means; |
| means[0] = rows / 2.0f; |
| means[1] = cols / 2.0f; |
| array<DataType, 2> std_devs; |
| std_devs[0] = 3.14f; |
| std_devs[1] = 2.7f; |
| internal::GaussianGenerator<DataType, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs); |
| |
| array<IndexType, 2> tensorRange = {{rows, cols}}; |
| Tensor<DataType, 2, DataLayout, IndexType> matrix(tensorRange); |
| Tensor<DataType, 2, DataLayout, IndexType> result(tensorRange); |
| |
| const size_t tensorBuffSize = matrix.size() * sizeof(DataType); |
| DataType* gpu_data_matrix = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); |
| |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu_matrix(gpu_data_matrix, tensorRange); |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu_result(gpu_data_result, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_matrix, matrix.data(), tensorBuffSize); |
| gpu_result.device(sycl_device) = gpu_matrix.generate(gaussian_gen); |
| sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize); |
| |
| for (IndexType i = 0; i < rows; ++i) { |
| for (IndexType j = 0; j < cols; ++j) { |
| DataType g_rows = powf(rows / 2.0f - i, 2) / (3.14f * 3.14f) * 0.5f; |
| DataType g_cols = powf(cols / 2.0f - j, 2) / (2.7f * 2.7f) * 0.5f; |
| DataType gaussian = expf(-g_rows - g_cols); |
| Eigen::internal::isApprox(result(i, j), gaussian, error_threshold); |
| } |
| } |
| } |
| |
| template <typename DataType, typename dev_Selector> |
| void sycl_generator_test_per_device(dev_Selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_1D_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_1D_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_2D_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_2D_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_gaussian_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_gaussian_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_generator_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_generator_test_per_device<float>(device)); |
| } |
| } |